

Spectrum assets downlink + uplink from 700 to 3600 MHz (12/2017)

LTE Spectral Efficiency in Live Networks

Large Number of Live Nokia Networks

We estimate the spectral efficiency during busy hour in the busy areas from >80 live networks from the carried traffic per cell with a few assumptions

- 20% of BTS makes 50% of traffic
- Busy hour is 7% of daily traffic
- Average busy hour load is 70% of the maximum
- No voice impact considered
- Average LTE bandwidth 15 MHz

10-20x User Data Rates with 5G up to 1 Gbps

- 200-500 Mbps average user data rates with 100 MHz 5G with mMIMO
- 400-1000 Mbps average user data rates with 200 MHz 5G with mMIMO

In-Home 5G with 2.5 / 3.7 GHz – Cutting the Cord

- 2.5 / 3.7 GHz brings a lot of capacity – potentially enough for fixed home access
- 1-2 TB per household per month with 300 households per BTS
- No need for directional CPE antenna

NOKIA

6

5G Motivations per Band

24-39 GHz

- Local solution with spectrum license
- Peak rate > 5 Gbps

5 GHz

- · Local solution without spectrum license
- Improved quality compared to WiFi

3.3-4.9 GHz

1.8 – 2.6 GHz

Sub 1 GHz

- 100 MHz bandwidth for 2 Gbps
- 10-20x more capacity than an LTE carrier
- 5G brings mMIMO capable eco-system
- 2-3x spectrum efficiency compared to LTE
- Low latency coverage for new services
- Improve spectrum and energy efficiency vs LTE

3.5 GHz Spectrum Auctions Results

8

- Major differences in spectrum prices at 3.5 GHz
- Spectrum price in Italy turned out to be expensive (four operators & high data usage)

28 GHz for Capacity Boost and Offloading

4x data rate with 28 GHz (250 MHz) + 3.5 GHz (40 MHz) vs 3.5 GHz only

Dense urban outdoor coverage 40-80% with existing sites with 28 GHz

LTE Spectral Efficiency – Global Network Wide View

- Low load typically shows>2 bps/Hz
- Very high load shows <1.7 bps/Hz
- High efficiency & high load networks mainly fixed wireless traffic

Data collected from network counters One dot is one complete network

Expected Downlink Spectral Efficiency

bps/Hz/cell

Spectrum	Bandwidth	Antennas	LTE	5G
<1 GHz	10 MHz	2x2MIMO	1.7	2.2
1.7-2.5 GHz	20 MHz	4x4MIMO ¹	2.5	3.3
2.5/3.5 GHz	100 MHz	mMIMO 64x4 ²	6.3	10.5

Main factors improving spectral efficiency

- Massive MIMO
- Device antennas
- 5G enhancements

¹50% gain assumed from 4x4 vs 2x2 ²mMIMO gives 2.5..3.0x more capacity than 4TX

Low Latency with Short Transmission Time

Measured 5G Latency with 3.5 GHz TDD

13

- Measured latency 4-5 ms with 3.5 GHz
 TDD band with Qualcomm test device
- 3.5 GHz TDD cannot provide <3..4 ms latency due to 2.5 ms TDD frame.
- 2.5 GHz TDD cannot provide <6..10 ms latency if we need to follow TD-LTE frame structure (5 ms)

5G Latency and Spectrum

- 5G low latency (1 ms) can be obtained with low band FDD or with mmW TDD
- 2.5/3.5 GHz TDD can provide nice latency (<10 ms) but not ultra-low latency

iPhone XS Teardown

Application processor A12 (7 nm)

Apple Bluetooth & Wi-Fi

Intel baseband XMM7560 (14 nm)

Embedded SIM micro controller

Avago high/mid band PA

Intel RF transceiver

- Apple APL1WB1 A12 Blonic SoC layered over Micron MT53D512M64D45B-046 4 GB LPDDR4X SDRAM
- STMicroelectronics STB601A0 power management IC (possibly for Face ID)
- 3x Apple 338500411 audio amplifiers, two for stereo and one for haptics
- Apple 338S00383-A0 power management IC (possibly from Dialog Systems)
- Apple 338500456 power management IC
- Apple 338500375 system power management IC (possibly from Dialog Systems)
- TI SN2600B1 battery charger
- Apple/USI 339S00551 (XS) and 338S00540 (XS Max) WIFI/Bluetooth SoC
- Intel PMB9955 (likely XMM7560) baseband processor/inodems
- Sorry, Qualcomm fans.
- 5T Microelectronics ST33G1M2 32 bit MCU with ARM SecurCore SC300
- This is the same embedded SIM (eSIM) that we found in the Apple Watch Series 3 and the Google Pixel 2 Xt.
- NXP 100VB27 NFC controller
- Broadcom 59355A210646 wireless charging
 module
- Avago 8092M high/mid PAD
- Murata 500 4x4 MIMO duplexer
- Skyworks 206-15 and 170-21 power amplification modules
- Intel 5762 RF transceiver
- Skyworks 5775 RF Switch
- Skyworks 5941 GPS low-noise amplifiers
- Intel 6829 power management IC

Cost of Connectivity in iPhones Keeps Increasing

Faster speeds, more RF bands and more antennas

- Cost of connectivity parts in iPhones have gradually increased due to faster speeds, more RF bands and more antennas
- iPhone XS has 1 Gbps, 25+ bands and 4x4MIMO
- 5G and mmWs brings again new challenges

NOKIA

16

5G Device Penetration based on LTE History

5G device penetration will hit 50% in most markets during 2023-2024 if we simply follow LTE history. Penetration of 30% typically 1-1.5 year earlier 2022-2023.

