

Heterogeneous Systems of mmwave Access and Backhaul for 5G Densification

Ali Sadri, PhD

Sr. Director

Intel Corporation

Past and Future Capacity Improvement

Search for Alternate Spectrum

Reuse mmWave Knowledge

- * Categorized based on channel models and path loss
- ** Potentially the same technology elements could be used across a range of frequencies

mmWave Path-Loss Comparisons

HetNet with mmWave Capable Small Cells (MCSC)

Network Densification Topology

- Fiber Node
- Distribution Node
- Access Node

High Frequency Beam Forming

Challenges in mmWave Systems Design

Higher Path Loss

- To compensate with the high path loss higher gain antenna and/or higher transmit power is required
- EIRP, TX power and RF exposure limit are regulated

Massive MIMO is required for high gain antennas

- Transmission becomes highly directional
- With Narrow beams, tracking of the UE becomes challenging

Feed line loss

- Diminishing return occurs as size of array increases
- Transmission loss increases as function of frequency

Challenges in RF & Antenna

• Feed line loss: (8-by-8) elements

Antenna spacing:
$$\frac{\lambda}{2} = \frac{c/f}{2} = \frac{7.69mm}{2}$$

@ 28 GHz is 5.36mm and @ 39 GHz is 3.85mm

From 60 GHz to 28 GHz (or 38 GHz),

- The required area getting bigger then feed line getting longer (roughly double).
- Feed loss is also a function of frequency (higher loss at 60 GHz)

Modular RFEM Configurations

Antenna Side

Shield Side

60GHz Operation
16 Elements

25.2 mm x 9.8 mm

16 elements

32 elements

64 elements

128 elements

128 elements

GEN3+ Evaluation Kit

Hardware Overview

- Indoor Design
 - Easy access to ports
 - Easy signal breakout for chamber tests
 - Easy tabletop, tripod, post, ceiling installation
- Antenna Array
 - 128 elements 8x16 array balanced feeds
 - Tiled 8x RFEMs based on Intel WiGig product
 - 1x Intel WiGig Baseband Modem Module

Link Budget Calculation

Calculate SNR values and find supportable MCS in AWGN channels

ITU Region N (1 Gbps threshold)

LOS	Backhaul	Access
No rain	650 m	380 m
99.00% availability	600 m	360 m
99.90% availability	470 m	290 m
99.99% availability	350 m	230 m

Assumptions

- Noise figure + implementation loss: (10.5 + 3) dB
- PER < 1%
- AWGN channel (phase impairment considered)

Antenna Field Regions

Modular Sparse Array

Anant Gupta, UCSB

Under the direction of:

Professor Madhow of UCSB and Professor Amin of Standard

Oct 31, 2016

Sparse Array of Sub-Arrays

Goal: Sparse array of subarrays for *directive* & *steerable* beams with:

- Sparse placement of subarrays (4x4 element arrays).
- Optimal phase shifts for beamsteering.

Attribute:

- Larger aperture → Directivity ↑ and BW ↓
- Sparse arrays with same/fewer elements

Challenge:

- Sub-Nyquist generates aliasing and grating lobes
- Problem different from traditional 2D placement (subarray elements are fixed)

Approach: Non uniform configurations perform better in all metrics

- · Optimal placement of sub-arrays and phase processing
- Algorithmic/application-level resiliency to aliasing (e.g. for imaging)

Early Insights

Trade-offs in different architectures:

Metrics:

BW, Grating/side lobes, Directivity

Directivity saturates beyond certain aperture size

Major Metrics & Approach

Cost functions

- MSLL: Maximum Side lobe level(relative to main lobe)
- · Directivity Gain-
- 2D Beamwidth: (3 dB beam)_{Max}* (3 dB beam)_{Min}
- ASLL (Average Side Lobe Level)

Sub-Array Placement: Greedy search

 Sequentially search for subarray positions on all possible locations of grid (dx=0.5λ, dy=0.6λ).

Steering weight optimization: Sequential Optimization

 Scan for best steering weight across all elements to reduce MSLL.

Tradeoffs in Performance

Observations and tradeoffs

Tradeoff between beamwidth and sidelobe level as aperture size increases.

Beamwidth ∝ (Aperture area)⁻¹

Early Results; trade-offs in beam steering

Observations and tradeoffs

Tradeoff between Directivity gain & sidelobe level with phase optimization

Phase optimization to ↓ MSLL causes ↓ Directivity.

Beamwidth ∝ (Aperture area)⁻¹

Beamwidth and Aperture
Reuleaux Triangle
Opt. Circle
Opt. Plus
Opt. Plus Opt. Circle OPt. Plus 10 G_D=27.12 dBi G_D=27.12 dBi G_D=27.13 dBi 0.1 0.1 0.1 **....** λ units λ units λ units 35 35 0.05 0.05 0.05 30 30 30 25 25 > \geq -5 -5 -5 20 20 -0.0520 -0.05-0.0515 15 -0.1 -0.1 -0.1 -10 -10 10 -5 -10 10 -10 -5 -10 0 0.1 -0.1 -0.1 0.1 -0.1 0 0.1 $x - \lambda$ units $x - \lambda$ units $x - \lambda$ units Gain ▼ Max Sidelobe
True Direction Circle2 Circle 3 Full grid Circle2 Circle 3 Full grid G_p=27.12 dBi G_D=27.10 dBi G_=27.10 dBi 10 10 r Peak of mainle 0.1 0.1 λ units units units 35 35 0.05 0.05 0.05 30 30 30 ~ \prec 25 25 \geq 20 -0.0520 -0.05 20 -5 -0.05 15 15 -0.1-10 10 -5 -5 0 5 -10 -5 -10 10 -10 0 -0.1 0 0.1 -0.1 0 0.1 -0.10 0.1 $x - \lambda$ units $x - \lambda$ units $x - \lambda$ units U U Benchmark 1 small area **Fine Optimization** Fine Optimization Benchmark 1 small area G_D=26.92 dBi G_D=27.01 dBi G_D=27.09 dBi 10 10 10 0.1 0.1 0.1 35 35 35 - λ units λ units λ units 0.05 0.05 0.05 30 30 30 >25 25 25 > >20 20 20 -0.05-5 -5 -0.05 15 15 -0. -0 -10 10 -10 -5 10 -10 -5 0 5 10 -10 -5 0 5 10 0.1 0.1 0.1 -0.10 -0.10 -0.1 0 $x - \lambda$ units x - λ units $x - \lambda$ units

Beam width is roughly inverse of physical array aperture width

Conclusion

- Substantial effort has been focused in the industry on the 5G access technology to improve capacity, latency, throughput, scalability and quality of service:
- Access technology alone cannot significantly improve network capacity;
- An end-to-end 5G system need be augmented by flexible and high throughput backhaul and fronthaul;
- mmWave technology is a great candidate for both access and backhauling to increase network throughput and capacity, and lower interference;
- Sparse array architecture provides additional feature to optimize array performance