COOL: Common Optimization and Operation framework based on network utiLity theory for 5G technologies & IoT

Symeon Papavassiliou

National Technical University of Athens (NTUA)
School of Electrical and Computer Engineering
Network Management & Optimal Design Lab (NETMODE)

Thessaloniki, Greece, July 11 2017
Future Wireless Networking Arena - 5G

- A heterogeneous environment
 - Different types of resources
 - Different QoS-provisioning and resource allocation mechanisms

- Broadband mobile is a key element for sustainable and inclusive quality of life in Europe
 - Year 2020 (estimation): 5 billion broadband mobile subscribers, 50 billion wireless devices

- A simple but fundamental observation is that the one element, besides an interface (e.g. radio), that all communicating objects will have in common is awareness

- Act in an autonomic fashion with varying levels of intelligence and capabilities.
Optimization and Resource Management in NOMA Wireless Networks

Supporting Real and Non-real Time Service Bundling

- Not centrally determined (uplink): The decision – optimization process lies at each user
- Distributed Approach
- Multiple Services
- Resource Allocation
- Transmission Technique
- Network utility maximization theory and game theory to address resource allocation and properly capture and reflect users’ behavior within the competitive arena of system’s resource allocation

Optimally allocate Resources (Transmission Power and Rate) based on Utility Maximization

Real Time Services

Non Real Time Services
Network Utility Maximization (NUM)

- Utility Function (concept adopted from the field of economics): reflects a user’s degree of satisfaction with respect to his service performance.

 \[\sum_{i=1}^{N} U_i \]

 utility function that can depend on throughput, delay, jitter, energy

- Objective Function

- Cost Function

 \[\sum_{i=1}^{N} C_i \]

 cost function that can depend on several degrees of freedom, including power

- Utility-based frameworks for the QoS/QoE-driven power and rate control problem in wireless networks, due to the heterogeneity and diversity of the supported services and corresponding service requirements.
Service types in 5G networking era

Elastic Services

- **Non Real Time** Services
 - Shiftable in Time
 - Delay tolerant

Examples include
- Data uploading
- E-mail

Inelastic Services

- **Real Time** Services
 - Non shiftable in time
 - Dependent on meeting specific QoS and data rate thresholds

Examples include
- Video streaming
- E-calls

Utility vs. Data Rate

- **Log based concave utility** where higher data rates drive higher user satisfaction levels
- **Sigmoidal based utility** where highest satisfaction is achieved when the minimum data rate thresholds are met
Scientific and Business Challenges in Resource Optimization in Wireless Networks

- **Scientific Challenges – Multi-* 5G Wireless Networks:** heterogeneity, diversity and multiplicity
 - Multi-Services in 5G Wireless Networks
 - reflecting different QoS/QoE requirements – real time vs. non-real time
 - Multi-Resources in 5G Wireless Networks
 - in nature (e.g., power and/or rate control)
 - in properties (e.g., continuous and/or discrete, depending on the wireless access technology, e.g., NOMA, SC-FDMA, etc.)
 - Multi-Tier Architectures in 5G Wireless Networks
 - e.g. cellular, femtocells, VLC
 - Multi-Providers Environment in 5G Wireless Networks

- **From Business Service Bundling to Technical Service Bundling**
 - Power, Rate, QoS, QoE, Price
Bundling and Pricing for Wireless Network Technical Services

Bundling refers to the integration and offering of two or more products for which different potentially markets exist into a unified package.

Benefits:
- Adaptive utilization of resources among the different services
- Competitive advantage against competition
- Synergies from the concurrent support of the involved services leads to higher data rates in an energy efficient manner
- Address different user needs within the same offering
- Exploit bandwidth in a more efficient way
- Price advantages from the sale of different services in a single package
However there is a ... Long Dialogue - Multidisciplinary

- **Network scientists**
 - “Give me data, we’ll model ...”
 - “... and by the way, we are not interested in “details” like how the data was collected or if it can be used for our purpose ...”

- **Mathematicians**
 - “Give me (network) models, we’ll do (rigorous) proofs ...”

- **Internet researchers**
 - “Give me network models (with or w/o proofs), we’ll use them.”
 - “... and by the way, we’ll ignore all the domain knowledge that we have about the Network/Internet ...”

Need for Validation and Experimentation
Utility-based Networking experiments for Improving QUality of Experience in mobile broadband environments: The UNIQUE experiment of MONROE

- Design a utility-based framework for wireless access network selection via utility functions
 - Take into account QoS parameters, e.g., throughput, delay, packet loss, etc.
 - Factor in QoE evaluations – quality of playback perceived by the users
- Use the framework to select among different (3) available wireless access networks
 - Devices are assumed to have available 3 interfaces to different mobile service providers
 - MONROE nodes provide such capabilities

General Design of Utility Function

\[U(i) = \sum_d \left[A(i,d)U_f(p_f,i,d) - B(p_f,i,d) \right] + \left[C(i)U_n(p_n,i) - D(p_n,i) \right] \]

User related part

Flow related part
Utility-based Access Network Selection

- Use QoE-QoS mapping and properly designed utility functions to select the wireless access interface yielding better QoE-QoS combined outcome
Virtualization+Federation: viable path to large-scale experimentation?

Network Virtualization:
- Allows multiple heterogeneous network architectures to cohabit on a shared physical substrate
- Provides a powerful way to run multiple virtual networks, each customized to a specific purpose, simultaneously over a shared substrate
- Provides flexibility, promotes diversity, promises manageability

Testbed Federation:
- Interconnection of independent testbeds/environments for enhanced experimentation under common management framework – “being part” of single resource/environment
- Positive externality (benefits of both the users and providers of the individual testbeds)
- Heterogeneity and diversity (geographical, technological)

Hybrid Testing: Large scale experimentation in combination with emulations
Thank you...

papavass@mail.ntua.gr

http://www.netmode.ntua.gr/papavass/

https://scholar.google.com/citations?hl=en&user=qVvp2dEAAAAJ&view_op=list_works&sortby=pubdate