5G mmWave Radio design for Mobile

Kamal Sahota Vice President Engineering Qualcomm Inc.

Agenda

- 5G RF standard
 5G mm Wave bands
- WAN Transceiver complexity over the last 5 years.
- Process technology requirements for mm wave
- Smart phone system architecture (RF centric).
- Antenna Arrays
- Phase shifter architectures
- Transceiver architectures.
- Large bandwidth challenges
- Measured results
- Conclusion

5G NR standard

- Release 15 accelerated to finish 5G standard by Q4 17
 - Non stand alone and Stand alone 5G
 - Non stand alone uses a 4G anchor cell to help extend coverage for 5G enabled mobile devices.
 - Stand Alone 5G enabled later in 2018

 5G separated into sub 6 GHz and mmWave bands for initial deployment based on geographical region spectrum availability

24 – 40 GHz

RFIC 4G to 5G evolution

2017 4x4 MIMO on 2 CA+ 2x2 MIMO on 1 CA ➤ 1GBps data rates 2018

- 4x4 MIMO on more CA+
- 1.5GBps data rates
- 256 QAM
- 60MHz UL BW

2019

4x4 MIMO on more CA+

Sub 6 5G

mm Wave 5G

100MHz component carrier

200MHz RF bw for sub 6

800MHz RF bw for mm Wave

Future 5G Transceiver implications

- Multi mode 5G/4G
 - 2017 LTE 5 RX Carriers aggregated
 - > 44 bands
 - > more than 1000 DL (Down Link) CA combinations
 - > UL (Uplink) CA concurrent with DL CA
 - 2G/3G also supported
- 5G adds further complexity
 - More bands both sub-6 and mm Wave.
 - Wider bandwidths
 - 100MHz component carrier, up to 8 component carriers
 - Higher carrier frequencies 24 to 71 GHz
 - Higher order modulation- 1024 QAM for sub 6GHz
 - Concurrent with 4G to enable > 5 GBps data rates
 - Low latency control paths
 - AGC switching times
 - PLL settling
 - More antennas and additional PCB components adding PCB area.

Process /Device requirements Fmax*Bvds > 500 GHz*V

- - High gain per stage
 - high breakdown voltage for PA's.
 - Nfmin
- Digital Logic density for codebook updates and dynamic beam switching.
- Low cost
- Low resistivity metal for coils and Vdd/gnd routing
- Low loss transmission lines

Number of Antennas for mmWave

- For a given EIRP, doubling the Antennas results in :
 - + Reduces Element TX power by 4
 - + Reduces DC power dissipation by 2
 - Increases PCB area by 2
 - +Allows for narrower beams, improved spatial filtering.
 - More complexity and transceiver cost

Antenna Arrays compensate for additional propagation losses at mmWave frequencies

Parameter	5GHz	28GHz
Antenna gain (dB)	-4.5	5
Antenna efficiency	35%	80%
Beam forming gain (dB) (8elements)	0 dB	9 dB
TRP(dBm)	23	20 (12.5 mW per element)
Free space Path loss difference between 5 and 28GHz	0	21
EIRP	18.5 dBm	34 dBm
Mmwave link penalty relative to 5GHz		=EIRP_28GHz-EIRP_5GHz- path loss= -5.5 dB

EIRP (dBm) = P_out (dBm/element) + 10*log₁₀(N_elem) + Individual_element_gain (dB) + 10*log₁₀(N_elem) Beamforming Gain Antenna Gain

Antenna Configurations

- 1x8 dipole
 - High feedline loss
 - Single polarization
 - Aperture area (without ground): ~1.6x43.2mm
- Two 1x4 dipoles at corner, top and side edge
 - Single polarization in majority of directions
 - Aperture area (without ground): ~1.6x43.2mm
- 2x5 dual-pol patch
 - Allows for dual-pol MIMO
 - Poor Coverage
 - Aperture area: ~10.8x27mm
- 2x2 dual-pol patch and two 1x2 dipoles
 - Aperture area: ~12.4x12.4
- 2x4 dual-pol patch and 1x2 & 1x4 dipoles
 - Aperture area: ~12.4x23.2

1x8 Dipole at One Edge

Distribution of gain over all angles Envelop of all phase scanned beams

Two 1x4 Dipoles at Corner (2

Subarrays)

Distribution of gain over all angles Best of all phase scanned beams between two subarrays

2x5 Dual-Pol Patch Array (Best of 2 Subarrays) 2x5 Dual-Pol Patch G_{total} 1 15 0.9 ъ 150 10 Theta (deg) 0.8 100 5 0.7 CDF Antenna Gain 50 0 0.6 0 200 250 300 0 50 100 150 350 0.5 Phi (deg) \mathbf{G}_{θ} $\mathsf{G}_{_{\phi}}$ 0.4 G total 0.3 150 150 Theta (deg) 00 01 00 01 Theta (deg) G 0.2 100 0.1 50 0 0 0 -5 5 10 15 0 200 300 200 300 100 100 0 0 Gain (dBi) Phi (deg) Phi (deg)

Comparison of Total Power Patterns

- Patch designs yield higher peak gain (and allow for dual-pol MIMO)
- Configurations with multiple arrays have better angular coverage
- Two 1x4 dipoles performs well for 50%ile angular coverage:
 - Not considering feedline losses!
 - No dual-pol MIMO
- Single array configurations have relatively poor angular coverage (1x8 dipole and 2x5 patch, ~1dBi at 10%)

Comparison for Each Polarization

Comparison of 1x8 Dipole Array with

0.5λ , 0.4λ , 0.3λ Element Spacing at 28GHz

Total Aperture Area Matters not number of elements for Gain

Placement of Antenna Arrays in Smart phones

- Placement of Antenna Arrays constrained by Industrial Design
- Extra losses due to plastic / nearby metal need to be accounted for in the design
- Switched Antenna
 Diversity to mitigate
 hand /body blockage.
- Spatial and polarization MIMO within each array.

Hybrid beam forming

- Hybrid beam forming architectures
 - Antenna combining done at RF, IF into 1 or more layers.
 - MIMO processing at baseband
 - Full digital combining prohibitive at the moment for mobile devices.
- Different types of phase shifter architectures
 - Lo path phase shifter
 - RF phase shifter
 - IF/BB phase shifter
- Tradeoffs in power performance for all 3.
 - For Number of elements <= 4 all have similar power dissipation.
 - For large N RF path phase shifter best for power.
 - Lo phase shifter has higher accuracy and resolution.

TX Beam forming architectures

(c) Analog Baseband Phase Shifting

(d) Digital Baseband Phase Shifting

Figures from UC Berkeley PHD Thesis by Jiashu Chen "Advanced Architectures for efficient mmWave transmitters " Fall 2013.

RF Phase Shift Architecture

Vector modulator type phase shifter Quadrature generation via poly phase filter Weighing done by VGA's Passive or current mode combiner

Phase shifter topology has implications on architecture choice.

- ZIF architecture would require large number of mixers if phase shifting architecture is used.
 - Larger power dissipation due to many LO chains running at RF frequency for large number of array elements.
- Super Het has less of a power penalty with phase shifting architecture.
 - Low side injection.
- Architecture choice also has PCB board level routing constraints.
 - SuperHet requires only IF lines vs Analog IQ.

Large bandwidth Challenges

- At mm Wave frequencies, due to finite ft, the transistor gain per stage is lower.
 - Many LC tank loaded stages result in droop and cause in band signal attenuation.
- Super het architectures result in large fractional bw at IF frequencies.
- More susceptible to interference from other radios and clocks in the system.
- Digital pre-distortion (DPD) difficult due to AM/PM and AM/AM bandwidth expansion.
- Antenna Array (DPD) challenging
 - DPD on each element vs DPD on array
 - Measurement receiver capability and number
- Wide band ADC/DACs sampling at GHz frequencies

Measured results

Element and Peak Gain agree with Simulation.

- Peak scans +/-45 degrees
- > 33 dBm EIRP achievable

antenna modules

Conclusion

- Smart phone RF front end complexity increased exponentially over the last few years.
- 5G adds additional complexity in terms of more bands, higher frequency bands, and wider bandwidths.
- Wireless Systems continue to evolve in complexitynew phase is directional communications with phased arrays.
- Phased arrays help mitigate the effects of increased path loss at mm wave frequencies.
- Many challenges remain to be solved in the next few years.
- Silicon and packaging technology enabling low cost phased arrays for consumer devices.

Acknowledgments

 Thanks to my colleagues at Qualcomm for providing Antenna Array EM sims and measurements.