Full Duplex Wireless: From Fundamental Physics and Integrated Circuits to Complex Systems and Networking

Prof. Harish Krishnaswamy Columbia high-Speed and Mm-wave IC (CoSMIC) Lab Department of Electrical Engineering Columbia University

Introduction

- Full Duplex Wireless
- FD at the Higher Layers
- Conclusion

Next generation (5G) communication systems are targeting 1000x increase in data capacity!

Images courtesy Microwave Journal, University of Bristol, Proc. IEEE IMS 2017 5G Summit

Signal Processing at the Antenna?

Can we move complex analog and digital signal processing to RF *at the antenna* to enable new functionalities?

Breaking Lorentz Reciprocity has traditionally required exploiting the magneto-optic Faraday Effect.

Columbia's FlexICoN Project

- Introduction
- Full Duplex Wireless
- FD at the Higher Layers
- Conclusion

Self-Interference in Full Duplex

Full Duplex requires >100dB of self-interference cancellation, which must be obtained across all domains.

SI Management: A Closer Look

 SI management is complicated by <u>noise, distortion, phase noise</u> <u>introduced in the TX, RX, cancellers</u> and an <u>uncertain wireless channel</u>.

- Introduction
- Full Duplex Wireless

•SIC RX based on Frequency-Domain Equalization

- 60GHz TRX with Polarization-Based Antenna SIC
- Full-Duplex Radio with Integrated Magnetic-free N-Path-Filter-Based Circulator and Analog Baseband SIC
- FD at the Higher Layers
- Conclusion

For 25dB RF SIC with a frequency-flat canceller, the maximum supported signal BW is only ~3MHz.

 Frequency-flat RF canceller can emulate a frequency-selective antenna interface <u>only at one frequency</u>.

RF Canceller with 2nd Order BPF

 Reconfigurable 2nd order RF BPF in canceller features 4 degrees of freedom: center frequency, Q, absolute amplitude and absolute phase.

RF Canceller with 2nd Order BPF

Replication of not only the amplitude/phase, but also the slope of the amplitude/phase(i.e. group delay).

Frequency-Domain Equalization

A filter bank enables replication at multiple points in different sub-bands – *Freq. Domain Equalization*.

High-Q Two-Port N-Path BPF

 Q of the N-path band-pass filter is reconfigured through the baseband capacitor C_B.

🕉 G_m-C Filter for Tunable Offset Freq.

 Center frequency shifts can be achieved and reconfigured through the clockwise/counter-clockwise-connected Gm cells.

Embedded Variable Attenuation

 Variable attenuation (amplitude scaling) is introduced by reconfiguring R_{RX} and R_{TX} relative to each other.

Embedded LO-Path Phase Shift

Phase shifts can be embedded in the LO path of a two-port N-path filter with no impact on close-in frequency response.

0.8-1.4GHz RX with FDE RF SIC

- Reconfigurable 0.8-1.4GHz 65nm CMOS current-mode receiver.
- FDE RF canceller operates at RX input and uses two filters.

0.8-1.4GHz RX with FDE RF SIC

Jin Zhou, Tsung-Hao Chuang, Tolga Dinc and Harish Krishnaswamy, "Reconfigurable receiver with >20MHz bandwidth selfinterference cancellation suitable for FDD, co-existence and full-duplex applications," in *2015 IEEE ISSCC*. Jin Zhou, Tsung-Hao Chuang, Tolga Dinc and Harish Krishnaswamy, "Integrated Wideband Self-Interference Cancellation in the RF Domain for FDD and Full-Duplex Wireless," **(invited paper)** *IEEE JSSC*, vol. 50, no. 12, pp. 3015-3031, Dec. 2015.

-250 -80 1.3 1.32 1.42 36 1.32 1.34 1.36 1.38 1.4 1.42 Frequency (GHz) Frequency (GHz) Proposed canceller has a SIC BW of 15/25MHz using one/two filters, up to 8X over a conventional canceller.

with SIC both filters 250 Group -20 200 8ns peak group delay -30 150 100 -40 50 0 -50

with conv. SIC (Theory)

AntennaFactor

by Linx

27MHz 64-QAM RF SIC Demo

Introduction

•Full Duplex Wireless

- •SIC RX based on Frequency-Domain Equalization
- 60GHz TRX with Polarization-Based Antenna SIC

•Full-Duplex Radio with Integrated Magnetic-free N-Path-Filter-Based Circulator and Analog Baseband SIC

- FD at the Higher Layers
- Conclusion

Polarization-Division Duplexing

• Using different polarizations for T/R *improves the isolation by 8-16 dB.*

Dolarization-Based Antenna SIC

• An auxiliary port is introduced on the RX antenna that is co-polarized with TX and terminated with a reflective termination to achieve wideband SIC.

5GHz Antenna SIC Results

- 50 dB isolation over 300MHz at 4.6 GHz (14x SIC BW).
- Reflective termination can be reconfigured to combat the variable SI scattering from the environment.

Tolga Dinc and Harish Krishnaswamy, "A T/R Antenna Pair with Polarization-Based Reconfigurable Wideband Self-Interference Cancellation for Simultaneous Transmit and Receive," in the 2015 IEEE International Microwave Symposium.

60GHz Full Duplex Transceiver

• The reconfigurable wideband polarization-based antenna cancellation is implemented at 60GHz and integrated with a 45nm SOI full-duplex TRX.

60GHz 45nm SOI CMOS TRX

World's first fully-integrated full-duplex TRX front-end.

Tolga Dinc, Anandaroop Chakrabarti and Harish Krishnaswamy, "A 60 GHz Same-Channel Full-Duplex CMOS Transceiver and Link Based on Reconfigurable Polarization-Based Antenna Cancellation," in the 2015 IEEE RFIC Symposium (Best Student Paper Award). IMS 2017 5G Summit

60GHz Full Duplex Wireless Link G

Tolga Dinc, Anandaroop Chakrabarti and Harish Krishnaswamy, "A 60GHz CMOS Full-Duplex Transceiver and Link with Polarization-Based Antenna and RF Cancellation," (invited paper) *IEEE JSSC*, vol. 51, no. 5, pp. 1125-1140, May 2016.

Introduction

Full Duplex Wireless

- SIC RX based on Frequency-Domain Equalization
- 60GHz TRX with Polarization-Based Antenna SIC
- Full-Duplex Radio with Integrated Magnetic-free N-Path-Filter-Based Circulator and Analog Baseband SIC

Fighting Fundamental Physics

- FD at the Higher Layers
- Conclusion

Reciprocal Circuits and Systems

Linear time-invariant (LTI) passive systems based on conventional materials are reciprocal.

How can we avoid this fundamental 3dB loss?

Achieving Non-Reciprocity

Non-Reciprocity Via Time-Variance

Permittivity modulation in silicon has limited modulation index ($C_{max}/C_{min} \sim 2-4$).

Conductivity Modulation

Conductivity can be modulated over a large index on a semiconductor substrate using passive transistor switches.

Staggered Commutation

Inspired by Faraday rotation, phase non-reciprocity can be achieved by using staggered commutation.

Two-Port CMOS N-Path Filters

• N-path filters are the electronic realization of commutating networks.

Phase Shift in N-Path Filters

[Ref: N. Reiskarimian, et al., IEEE 2016 TCAS-II.]

 Our previous work revealed phase shifts can be embedded in the N-path filter by phase shifting the clocks – essentially staggering the commutation.

Phase-shifts applied to signals near f_{LO} traveling in opposite directions have opposite signs.

IMS 2017 5G Summit

🕸 Non-Reciprocal Wave Propagation 🎪

In the counter-clockwise direction, signals add destructively. Non-reciprocal wave propagation is achieved!

IMS 2017 5G Summit

Compact Highly Linear Circulator

- The RX port is placed next to the N-path filter resulting in high linearity to excitations at the TX.
- The 3λ/4 line is miniaturized using three CLC networks for a compact implementation.
 MS 2017 5G Summit

65nm CMOS Circulator Breakout

This is the first CMOS magnetic-free passive nonreciprocal circulator IC.

*N. Reiskarimian, and H. Krishnaswamy, "Magnetic-free Non-Reciprocity Based on Staggered Commutation," Nature Communications 7:11217 doi: 10.1038/ncomms11217 (2016).

- The ANT-RX path sees the filtering profile of the N-path filter.
- Here, tuning is exploited to achieve very high (>50dB) narrowband isolation.

Measurements show very low loss (1.7dB) in both TX-ANT and ANT-RX paths and strong isolation.

Full Duplex Radio

• The full-duplex radio integrates the magnetic-free circulator, a noisecancelling receiver, transmitter baseband buffers, and an analog SI canceller.

 A nonlinear tapped delay-line-based digital canceller cancels not only the main SI but also the IM3 distortion generated on the SI.

2 65nm CMOS FD Radio Prototype

Jin Zhou, Negar Reiskarimian and Harish Krishnaswamy, "Receiver with integrated magnetic-free N-pathfilter-based non-reciprocal circulator and baseband self-interference cancellation for full-duplex wireless," in 2016 IEEE ISSCC Digest of Technical Papers, pp. 178–180, Feb. 2016. Negar Reiskarimian, Jin Zhou and Harish Krishnaswamy "A CMOS Passive LPTV Non-Magnetic Circulator

IMS 2017 5G Summit

and Its Application in a Full-Duplex Receiver," IEEE JSSC, vol. 52, no. 5, pp. 1358-1372, May 2017.

 Joint-optimization of SIC BW across the antenna tuner, circulator and analog baseband canceller enables 42dB on-chip average SIC across 12MHz BW.

🕸 SIC across ANT, Analog BB, Digital 🎪

First full-duplex link demonstration with –7dBm TX average output power and –92dBm noise floor.

🕸 Some Recent Results at ISSCC'17 🎪

A 28GHz circulator in 45nm SOI CMOS based on Spatio-Temporal Conductivity Modulation A merged circulator-RX with improved (~8dBm) power handling, NF, power dissipation

Tolga Dinc and Harish Krishnaswamy, "A 28GHz Magnetic-Free Non-reciprocal Passive CMOS Circulator Based on Spatio-Temporal Conductance Modulation", in the 2017 IEEE ISSCC, pp. 294-295, Feb. 2017.

Negar Reiskarimian, Mahmood Baraani Dastjerdi, Jin Zhou and Harish Krishnaswamy, "Highly-Linear Integrated Magnetic-Free Circulator-Receiver for Full-Duplex Wireless," in the 2017 ISSCC, pp. 316-317, Feb. 2017.

- Introduction
- Full Duplex Wireless
- FD at the Higher Layers
- Conclusion

Columbia's FlexICoN Project

Market Self-Interference Canc.

- Prior work on the resource allocation and rate gain characterization of fullduplex wireless assumes perfect self-interference cancellation.
- We model the imperfect self-interference cancellation at the MS.

Modeling Canc. at Integrated MSs

 A mathematical model is developed to model the self-interference cancellation obtained from a frequency-flat self-interference canceller.

IMS 2017 5G Summit

Dever Allocation Under High SINR

- A bidirectional link between a BS and a MS.
- 33 channels on a 20MHz bandwidth.

Rate Improvements

Significant – over 60% throughput gains – are achieved in the high SNR regime.

IMS 2017 5G Summit

- J. Marašević, J. Zhou, H. Krishnaswamy, Y. Zhong, and G. Zussman, "Resource Allocation and Rate Gains in Practical Full-Duplex Systems," *IEEE/ACM Transactions on Networking*, vol. 25, no. 1, pp. 292-305, Feb. 2017.
- J. Marašević, J. Zhou, H. Krishnaswamy, Y. Zhong, and G. Zussman, "Resource Allocation and Rate Gains in Practical Full-Duplex Systems," in *Proc. ACM SIGMETRICS*'15, 2015.

For newer work that computes resource allocation and rate gains using the frequency-domain equalization (FDE) based canceller:

• J. Marašević and G. Zussman, "On the Capacity Regions of Single-Channel and Multi-Channel Full-Duplex Links," in *Proc. ACM MobiHoc'16*, 2016.

5G Emerging Technologies

Full-Duplex

Massive MIMO

• Can these technologies work in conjunction with each other?

Full-Duplex massive MIMO

Additional benefits:

- 1. Massively increased throughput
- 2. Reduced interference
- 3. Higher reliability

- Introduction
- Full Duplex Wireless
- FD at the Higher Layers
- Conclusion

Conclusion

- Rethinking the functional boundaries of the conventional radio <u>through</u> <u>creative circuit design</u> enables the movement of complex signal processing functionalities to the RF front-end (<u>and even within the</u> <u>antenna</u>).
- Linear periodically time-varying circuits enable breaking of time-reversal symmetry and magnetic-free non-reciprocity in CMOS for the first time.
- The resultant <u>order-of-magnitude</u> performance enhancements enable new communication paradigms, such as full-duplex radio. <u>The first full-</u> <u>duplex RF and mmWave radio ICs have been demonstrated.</u>
- Topics for future research include <u>cross-layer co-design of PHY and</u> <u>MAC layers</u>, and <u>hardware implementations of full-duplex MIMO</u>.