

IEEE 5G Summit

Panel Session: 5G Test and Measurement

Malcolm Robertson, Keysight Jon Martens, Anritsu Chris Scholz, Rohde & Schwarz Jason White, National Instruments *Moderator: Kate A. Remley, NIST*

Catch the Wave

So Many Systems, So Much to Measure

mmWave Transistor and NL-Device Measurements

mmWave Signal Characterization

Channel Measurement and Modeling Massive MIMO and Over-the-Air Test

Some Measurement Challenges

Millimeter-wave Transistor and NL-Device Measurements

- mmWave Transistor Measurements and Models
- Acoustic-Wave Filters
- New Materials

Millimeter-Wave Signal Characterization

- Waveform Traceability
- Source and Transmitter Characterization
- Impedance, Power, Noise
- Uncertainty and Demodulation Errors

Channel Measurement Challenges

-110

30

60

Delay (ns)

PDPs for a single location,

different orientations

90

120

- Channel Modeling and Standards
- Effect of Uncertainty on Metrics, Models
- Angle of Departure, Angle of Arrival
- Many bands: 28, 38, 60, 72, 83 GHz, ...

5G-<LastName>

150

Antenna Measurement Challenges

MIMO Beam Forming and Over-the-Air Test

OTA test at mmWave in reverberation chamber

Antenna measurement over multiple angles

Beam Forming

- Smart Path Beam Forming Based on Antenna and Channel Models
- Testing Beam-Forming Algorithms

OTA Test and Massive MIMO

- Wideband Antenna Calibrations
- MIMO Antenna Test
- Free-Field Modulated Signal Test
- Reverberation-Chamber Methods

IEEE 🕅 ComSoc

The Measurement Elephant in the Room

On-Wafer to OTA – No connectors to test:

- Efficiency
- Distortion

ComSoc-

• Troubleshooting stages

What is the answer??

Some Questions for Discussion

• Devices and Materials:

- What are prospects for large-signal network analysis at mmWave frequencies?
- What are issues tuning mmWave harmonics?
- What is the role of materials measurements in future wireless?
- Signal characterization:
 - How to handle issues with cascading non-ideal, distortion-inducing instruments (similar to Additive EVM)?
 - How do you see the role of traceability in waveform measurements?

Channel measurements:

- Why is it more important to decouple the antenna from the channel measurement?
- Will errors in channel sounders be more important at mmWave frequencies?

• Antennas and Massive MIMO:

- How does one generate a known test field for multiple-element antenna arrays?
- What is the role of statistics in testing arrays that operate in more states than you can count?
- What are issues with distributed array timing and synchronization?
- The Elephant in the Room:
 - How to merge on-wafer and OTA test to verify performance?

Test and Measurement in 5G – A Global Inflection

Malcolm Robertson

5G Technology Trends

- Exploding Data Growth
- Complex 5G Technologies
- Evolution of the RAN
- Accelerated Timelines

5G Economic Trends

- Falling Wireless Industry CAPEX
- Cost of Test Driven Down
- Intense Competition
- Cloud Economics

Test and measurement over the entire ecosystem

 5G changes impact everything from device level to conformance testing to installation and maintenance (I&M).

- Bringing in mmWave capabilities at usable costs.

OTA and I&M? Interference hunt ideas

Mobile Technology R&D

Device/Module Production

Access Network I&M

Core Network

Component / Antenna

Conformance / Acceptance

Data Center / Computing

Service Assurance/ Big Data Analytics

Device modeling and design development

- Higher frequency tools exist for (quasi-) linear characterization to include AM-PM, intermodulation distortion, etc...
- How critical is harmonic characterization from a design (not modeling) perspective at higher frequencies?
- Will the PA continue to be a performance-defining element?

4-port 70 kHz-145 GHz Vector Network Analysis for device/model development

Materials measurement methods exist to the THz range. Adequate?

Radio measurements and the integration question

 Some waveforms place more demands on measurement equipment (less of a concern) but can reduce achievable EVM (uncertainties?).

 OTA blocking: the best way to test efficiently? Channel-specific steering and traffic generation?

 Not just the analog-digital split, but where is the network split? How much data reduction happens before an access point?

IMS2017 5G Summit

5G Test and Measurement Challenges

Chris Scholz

Product Manager, Vector Network Analyzers

Rohde & Schwarz North America

Chris.scholz@rsa.rohde-schwarz.com

(817) 422-2512

Rohde & Schwarz North America

Impact of 5G on Test & Measurement

5G Impact on Components Testing

Antenna

RF

Controller

4G Components/Devices

- Conventional Solution
 - Multiple discrete components
 - Designed/verified as component
 - Easy to Test
- Majority of Cost in Precision
 Metal
 Aptenne
 - Antenna
 - Diplexer
 - Waveguide Elements
 - Transitions/Interconnections

5G Components/Devices

- Single Chip CMOS
 - RF/ADC/DAC/Modem
- Large part of cost is in Test
 - mmW test in production
 - Wafer-level functional test
- Cost
 - Test equipment
 - Accuracy/Repeatability/T raceability
 - Ease of use
 - Time of test

Controller

5G Measurement Issues in Brief 2017 International Microwave Symposium, June 2017

Jason White

Director, RF and Wireless Test National Instruments

ni.com/5g

Key Test Challenges for 5G

ni.com/5g

IEEE T ComSoc

NI's Architectural Approach to 5G Test Challenges

Modularity

- Add performance as future requirements emerge
- Integrate non-RF I/O into same system to maintain small footprint

Frequency and Channel Agility

- Flexible mmWave configurations for multi-DUT, multi-frequency and beamforming test
- Tight timing and synchronization for MIMO configurations

HAWAI'I 5

Catch the Wave!

Software-defined Signal Processing

- Accelerated measurements using real-time FPGA processors programmed with LabVIEW FPGA
- Achieve demanding EVM requirements through more sophisticated calibration techniques

Key Open Issues for Test:

- Test cost of millimeter wave and MIMO
- Over the air access / control

ni.com/5g

