

# mm Band Multi-Antenna Systems & Statistical Learning ?

Arogyaswami Paulraj Stanford University

5G Summit IMS 2017 Honolulu



# Service Vision and Performance

Massive Connectivity

**Enhanced Broadband** 

Tele-Control, V2X



Low Power

Low Latency

**High Reliability** 

High Speed



- Proposed US Bands 28, 37, 39, 57 71 GHz
- Propagation mode
  - LOS, near LOS, strong shadowing (Foliage and Rain loss, 60 Ghz small absorption loss)
- Deployment
  - Small cells ~ 150m
- Need large arrays
  - Antenna elements get smaller -> need to rebuild aperture to get reasonable ranges – either use reflectors / lenses or multiple antennas and beamforming



# Large MIMO

- Antennas
  - BS >> 32
  - UE 2 8
- Narrow Base Station Beam widths
  6 to 2 dog
  - 6 to 2 deg
- Channel BW 100 1500 MHz
- Multiple Access Beamforming essential
  - MU-MIMO
  - SU-MIMO + TDMA / FDMA





#### **MIMO Modes**

- Single Stream (+TDMA)
- Single User MIMO (+TDMA)





- Multi User MIMO
- Distributed Multi User MIMO





### **Knowledge and Predictability**





- Poor knowledge and predictability is a challenge
  - Handover
  - Channel Knowledge and Predication
  - Scheduling
  - Interference
  - More ....

**Opportunities for using statistical learning?** 



- MU-MIMO needs good Transmit Channel Information (not so for simple beamforming)
  - FDD (or Closed loop TDD) Simple Pilot based techniques is overhead expensive
  - In TDD Tx- Rx calibration is hardware expensive
- Higher channel variability in vehicular environments



# Handover

- Strong shadowing means multiple base stations need to support a terminal with rapid handovers to select the best serving station
- Managing handover (& neighbor list ) is complicated





#### Interference

 Interference is much more dynamic than 4G due to narrow beams – depends on user position, base station beam pointing schedule (NAIC)





# Scheduling

- Scheduling gets more complicated because of tight inter-BS coupling
- Backhaul (S1)
  bandwidth
  management also
  comes into play





- CART, SVMs, DNN, CNN, RNN, RL,....
- Can be useful in applications where there is too little state knowledge or predictability for convex/nonconvex programming, instead works by learning patterns and relationships to extract self programming
- But very fragile... still in Infancy



#### Handwriting Recognition









Learning the correspondence mapping between Tx and Rx manifolds can help Channel Estimation





# User Likely to Download Movie ?







# New frontier but many open issues! Rasa Networks ...

