Phased array innovations for 5G mmWave beamforming

Alberto Valdes-Garcia

Research Staff Member, Manager Master Inventor & Member IBM Academy of Technology

IBM Research T. J. Watson Research Center

Toronto 5G Summit – November 2015 Enabling 5G: mmWave Silicon Integration and Packaging

Overview of IBM Research's 10+ years of work on silicon-based mmWave radios, phased arrays, and Gb/s link demonstrations

mmWave WLAN - IBM 16-Element 60-GHz phased array

mmWave Backhaul – IBM 64-Element 94-GHz phased array

mmWave handset radio - IBM 60-GHz low-power TRX

https://ieeetv.ieee.org/ieeetv-specials/toronto-5g-summit-2015-bodhisatwa-sadhu-enabling-5g-mmwave-silicon-integration-and-packaging?

Seattle 5G Summit – November 2016 mmWave Radio Design for Mobile Handsets

60-GHz (802.11ad), low-power (<250mW TX or RX), 32nm SOI CMOS TRX with switched beam antenna for wide spatial link coverage

mmWave handset radio – IBM 60-GHz low-power TRX

https://ieeetv.ieee.org/conference-highlights/seattle-5g-mmwave-radio-design-for-mobile-handsets?

Introduction to Millimeter-Wave (mmWave)

Key advantages of mmWave for 5G are higher data rates and spatial multiplexing

Gb/s mmWave Wireless Links:

Applications across the infrastructure stack

mmWave-based 5G network concept:

Ericsson: E. Dahlman, et al., "5G Radio Access," Ericsson Review, June, 2014 Samsung: W. Roh, et al., "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results," in IEEE Communications Magazine, Feb, 2014

||.....||

Enabling technology #1: Silicon integration of mmWave transceivers

Miniaturization and mass adoption of mmWave applications

Enabling technology #2: Integrated phased arrays for beam forming

A. Natarajan, et al., JSSC 2005

14+ Year History of mmWave Subsystem Research at IBM

Leading-edge highly-integrated technology solutions to enable wireless communication and sensor systems with less volume, weight and cost

This Presentation: Reston, VA 5G Summit – August 2017 Phased array innovations for 5G mmWave beamforming

- 28-GHz Phased Array Antenna Module co-developed by IBM and Ericsson
- Focus of this presentation is on innovative techniques to enable precise beamforming
 - IC Architecture
 - Building blocks to enable orthogonal phase and amplitude control at each RF Frintend
 - Antenna-in-package implementation

Key 5G mmWave Challenges

Key 5G mmWave Challenges... ... to IC Design Challenges

IC Architecture: RF Phase Shifting (single polarization shown for simplicity)

B. Sadhu, et al, "A 28GHz 32-Element Phased-Array Transceiver IC with Concurrent Dual Polarized Beams and 1.4 Degree Beam-Steering Resolution for 5G Communication", *IEEE ISSCC*, 2017.

IC Architecture: LO Path

IC Architecture: TX Path

lluull

IC Architecture: RX Path

IC Architecture: Front-End

B. Sadhu, et al, "A 28GHz 32-Element Phased-Array Transceiver IC with Concurrent Dual Polarized Beams and 1.4 Degree Beam-Steering Resolution for 5G Communication", *IEEE ISSCC*, 2017.

Key 5G mmWave Challenges... ... to IC Design Challenges

How Does a Conventional I/4 TX/RX Switch Work?

Degrades RX noise figure by ~ 1.5dB

How Does a Conventional I/4 TX/RX Switch Work?

Proposed Technique Cuts TX Losses

Degrades RX noise figure by ~ 2dB

Proposed Technique Cuts TX Losses

TX/RX Switch Circuit Details

TX/RX Switch Measurements

 1.2dB translates to 23% power savings in the phased array IC in TX mode

Key 5G mmWave Challenges... ... to IC Design Challenges

Orthogonal Gain & Phase Control Front-end

- Transmit/receive frontend_{\u0355}
 - Phase invariant gain control
 - Loss invariant phase shift

Phase Invariant Gain Control

B. Sadhu, J. Bulzzachelli, and A. Valdes-Garcia, "A 28GHz SiGe BiCMOS phase invariant VGA", IEEE Radio Frequency Integrated Circuits Symposium, pp. 319-322, May 2016.

Phase Control Using Tunable Transmission Line Phase Shifter

Y. Tousi and A. Valdes-Garcia, "A Ka-band Digitally-Controlled Phase Shifter with sub-degree Phase Precision", IEEE Radio Frequency Integrated Circuits Symposium, pp. 356-359, May 2016.

Connecting T-Line Unit Cells in Phase Shifter

- Small phase steps
- Large phase range
- Fast switching
- Uniform steps

Enabling Loss Invariance in Phase Shifter

Enabling Loss Invariance in Phase Shifter

30

©2015 IBM Corporation

Key 5G mmWave Challenges... ... to IC Design Challenges

Dual-polarized IC Architecture: Single Polarization Slice

Dual-polarized IC Architecture: Two Identical 16-Element Slices

Dual-polarized IC Architecture: 32 Elements Feed 16 Dual-Pol Antennas

Implemented in SiGe 130nm BiCMOS, GF 8HP: fT/fMAX = 200GHz/280GHz

Antenna-in-package and phased array scaling approach

Fully-Assembled 4-chip Antenna Module

- Package dimensions: 70mm x 70mm x 2.7mm
- Flip-chip assembly for 4 ICs
- 655 BGA w/ 1.27mm pitch supporting multiple power domains, IF (TX & RX) and LO signals, Digital control and ref clock signals
- Phased array IC and package scalability concept introduced and demonstrated at 94GHz in A. Valdes-Garcia, et al., RFIC 2013 and X. Gu, et al. ECTC 2014
- For 28GHz package details: X. Gu, D. Liu, C. Baks, O. Tageman, B. Sadhu, J. Hallin, L. Rexberg, and A. Valdes-Garcia, "A Multilayer Organic Package with 64 Dual-Polarized Antennas for 28GHz 5G Communication", *IEEE IMS*, June 2017.

Antenna-in-package Array with Air Cavity

- Aperture coupled patch antenna
- Uniform air cavity between antenna patch and feed structure
- 14-layer base substrate based on organic buildup technology

Measurement Results

On-wafer Measurement Results

Single TX Path in Full IC: 27 Front-Ends Across 9 ICs

Full IC performance									
			samp	27 samples μ/ σ					
	Temperature	25C	65C	85C	25C				
TX	Single-path gain ± Phase	32	27	24	34 / 1.5				
	Invariant Gain Control (dB)	±4.0	±4.4	±4.5	± 4.0 / 0.2				
	Single-path Op1dB (dBm)	14	14.1	13.9	13.5 / 0.4				
	Single-path Psat (dBm)	16.4	16.6	16.2	16 / 0.2				
	PA+switch peak efficiency measured in full IC (%)	22.1	20.1	20.8	20.5 / 0.6				
	3dB BW (GHz)	2							
	Op1dB/Psat variation across 360° phase control (dB)	<0.1	<0.2	<0.5					
RX	Op1dB/Psat variation across 8dB gain control (dB)	<0.1	<0.5	<2					
	Single-path gain ± Phase	34	31	28	35 / 0.6				
	Invariant Gain Control (dB)	±4.0	±4.4	±4.5	± 4.0 / 0.2				
	3dB BW (GHz)	1.5							
Sub-block performance									
LN	IANF (dB)	3.7	4.1	4.3					
LNA+switch+off-mode PANF (dB)		6.0	6.6	6.9					
TX/RX VGAgain control (dB)		8	8.8	9.1					
TΣ	(/RXVGAphase variation (°)	±1.5	±2	±1.5					
Pł	ase shifter phase control (°)	210	210	210					
Pł	ase shifter loss variation (dB)	±0.1	±0.2	±0.4					
R	K front end Ip1dB (dBm)	-22.5	-21.5	-21.5					

Over the Air Measurement Setup Using 4 IC Module

Evaluation board

Antenna chamber set-up

Measured 64 Element Progressive Element Turn On Without Calibration

Measured saturated EIRP in one polarization = 54dBm

Measured Loss Invariant Phase Control in Phased Array

Measurements of 16 Element Beams from 1 IC

Measured radiation patterns

Ideal radiation patterns calculated with the same angular resolution available in the measurement setup

Results obtained without requiring array calibration

Measured Beam Steering Control

Results obtained without requiring array calibration

Measured Beam Steering Control

Results obtained without requiring array calibration

Measured Beam Power Control

Results obtained without requiring array calibration

Beam-Forming Options in TX/RX

Total TRX elements per module (4 ICs) = 128

Measurements of Reconfigurable Beams from a Module (4 ICs)

8 16-element beams

2 64-element beams

Results obtained without requiring array calibration

Measured 64-element Beam-Steering

Beam across frequency

<u>±50° beam steering</u>

(w/ <10dB sidelobes w/o tapering)

Results obtained with one-step element to element calibration; uncalibrated results similar

Tapering Measurement Results

Measurement is performed in RX mode with 64 elements in H pol Tapering uses VGA control and Taylor window

Measured Beam Switching Speed

Measured TX↔RX Switching Speed

Performance Summary and Comparison for Published 28GHz Si-based Packaged Phased-Array TRX

	This work (ISSCC 2017 / IMS 2017)	Anokiwave (AWMF-0129 Datasheet)	UCSD (RFIC 2017)	LG (RFIC 2017)	UCSD (IMS 2017)
Number of Antennas	64	64	32	8	4
Simultaneous polarizations	2	1	1	2	1
FE Elements in Package/Board	128	64	32	16	4
Number of ICs	4	8	8	2	1
Input Interface	IF 3GHz	Not published	RF 28GHz	Baseband	RF 28GHz
EIRP per polarization	54dBm (Psat)	50dBm (P1dB)	41dBm (P1dB) @29GHz	31.5dBm (Psat)	24.5dBm (P1dB) @29GHz
DC power per polarization	13.2W(RX) + 20.4W(TX) @54dBm EIRP	18W (average)	4.2W (RX) + 6.4W(TX)	0.4W(RX) + 0.68W(TX) @24dBm EIRP	0.42W(RX) + 0.8W(TX)
IC Technology	GF SiGe 8HP 130nm	Not published	Jazz SBC18H3 SiGe BiCMOS	TSMC 28nm RF CMOS	Jazz SBC18H3 SiGe BiCMOS

Summary and Conclusions

- **First reported** mmWave 5G base-station IC in a multi-IC antenna-in-package module (ISSCC 2017)
- Proposed TRX switch improves EIRP without sacrificing power consumption
- Orthogonal phase and amplitude control for efficient beam control
- **High resolution beam steering** with low sidelobes based on fine phase shift resolution

Acknowledgments

B. Sadhu¹, Y. Tousi¹, J. Hallin², S. Sahl³, S. Reynolds¹,
Ö. Renström³, K. Sjögren², O. Haapalahti³, N. Mazor⁴,
B. Bokinge³, G. Weibull², H. Bengtsson³, A. Carlinger³,
E. Westesson⁵, J.-E. Thillberg³, L. Rexberg³, M. Yeck¹,
X. Gu¹, D, Friedman¹, C. Baks¹, D. Liu¹, Y. Kwark¹, M. Wahlen³, A. Ladjemi³, A. Malmcrona³.

¹IBM T. J. Watson Research Center, Yorktown Heights, NY
 ²Ericsson, Lindholmen, Sweden
 ³Ericsson, Kista, Sweden
 ⁴IBM Research, Haifa, Israel
 ⁵Ericsson, Lund, Sweden

'Ultimately though, we should expect mmWave systems to become as inexpensive and ubiquitous as 2.4- and 5-GHz WLAN systems are today. Some of the early companies developing products in the mmWave space will succeed and become profitable, and some will fail. **But the end result will be** "millimeter-waves for the masses."' - Advanced Millimeter Wave Technologies: Antenna, Packaging and Circuits, Wiley Press, 2009

References

- B. Sadhu, Y. Tousi1, J. Hallin, S. Sahl, S. Reynolds, O. Renstrom, K. Sjorgren, O.Haapalahti, N. Mazor, B. Bokinge, G. Weibull, H. Bengttson, A. Carlinger, E. Westesson5, J.-E. Thillberg, L. Rexberg, X. Gu, Daniel Friedman, and A. Valdes-Garcia, "A 28GHz 32-Element Phased-Array Transceiver IC with Concurrent Dual Polarized Beams and 1.4 Degree Beam-Steering Resolution for 5G Communication", *IEEE International Solid-State Circuits Conference*, 2017.
- X. Gu, D. Liu, C. Baks, O. Tageman, B. Sadhu, J. Hallin, L. Rexberg, and A. Valdes-Garcia, "A Multilayer Organic Package with 64 Dual-Polarized Antennas for 28GHz 5G Communication", *IEEE International Microwave Symposium*, June 2017.
- 3. Y. Tousi and A. Valdes-Garcia, "A Ka-band Digitally-Controlled Phase Shifter with sub-degree Phase Precision", IEEE Radio Frequency Integrated Circuits Symposium, pp. 356-359, May 2016.
- 4. B. Sadhu, J. Bulzzachelli, and A. Valdes-Garcia, "A 28GHz SiGe BiCMOS phase invariant VGA", IEEE Radio Frequency Integrated Circuits Symposium, pp. 319-322, May 2016.

To Learn More...

▶ IBM Presentation at IEEE 5G Summit November 2015.

"Enabling 5G: mmWave Silicon Integration and Packaging"

- Slides: <u>http://www.5gsummit.org/docs/slides/Bodhisatwa-Sadhu-5GSummit-Toronto-11142015.pdf</u>
- Video:

https://ieeetv.ieee.org/ieeetv-specials/toronto-5g-summit-2015-bodhisatwa-sadhu-enabling-5g-mmwave-siliconintegration-and-packaging?

IBM presentation at IEEE 5G Summit November 2016

"mmWave radio design for mobile handsets"

Video:

https://ieeetv.ieee.org/conference-highlights/seattle-5g-mmwave-radio-design-for-mobile-handsets?

IBM-Ericsson announcement on phased array for 5G:

http://www-03.ibm.com/press/us/en/pressrelease/51542.wss