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Complexity of Next-G mobile networks

Figure 2: Ericsson data-traffic forecast.

By 2027,
1) 40 billion connected
devices from different
technologies from smart
cities to Self-driving
cars and UAVs.

2) 4.4X increase
in data traffic, and 54%
of it is in 5G.

3)Video
traffic is estimated to
be 79% of data.
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Massive MIMO as a solution

▶ Massive Multiple-Input Multiple-Output (M-MIMO) is a
generalization of single-input single-output technology, where we use
hundreds of antennas at transverses instead of one.

▶ It aims to amplify all benefits of classical MIMO in terms of data
rate, diversity gain, spectral efficiency, and network reliability.

▶ M-MIMO is one of the key enabling technology for next-generation
wireless communication networks.

▶ It is motivated by the advent of graphic nano-antennas that allow
the integration of hundreds of antennas in various terminals.

Key Enabling
Technologies 

Massive MIMO

Beamforming

Terahertz THz

Millimeter wave
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Cell-Free Massive MIMO [1]
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Massive MIMO Key problems

▶ Main challenge about M-MIMO is to provide scalable/accurate
physical layers algorithms.

▶ Signal detection represents the most critical task since the network’s
performance depends on it.

Figure 3: Massive-MIMO physical layers.
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Poor performance of linear-decoders

Why Do We Need New Signal Decoding Algorithms for M-MIMO?

▶ Zero Forcing (ZF) and Minimum Mean Square Error (MMSE) have
low latency, but they have a poor error rate performance, especially
for a large number of users and dense constellations. Thus,
inducing a throughput loss and low network reliability.
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Figure 4: Error rate of MMSE and ZF for a 100 × 100 MIMO system with 64-QAM modulation.

▶ Scalability issue due to matrix-inversion operation needed by these
algorithms.
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M-MIMO optimization problem

y = Hs + n. (1)

ŝML = arg min
s∈S

||y − Hs||2. (2)

||y − Hs||2 = ||y − QRs||2

= ||ȳ − Rs||2, where ȳ = QHy ,

where R ∈ CN×M is an upper triangular matrix and Q ∈ CN×N is an
orthogonal matrix.

min
M∑
k=1

gk(sM−1, ..., sM−k), where (3)

gk(sM−1, ..., sM−k) = ||ȳM−k −
M−1∑

i=M−k

r(M−k),i si ||2. (4)
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Complexity of non-linear approaches

M-MIMO discrete optimization problem with ΩM possible solutions

▶ Optimal algorithms, such as Maximum Likelihood (ML) and
Sphere Decoder (SD), have excellent error rate performance but are
challenging to use for M-MIMO in practice due to their exponential
complexity.

▶ Approximate algorithms, such as K-best, constitute a trade-off
between complexity and performance. However, they are sensitive to
dense constellations and can not be used beyond a two-digit number
of antennas. Thus, they are far from M-MIMO requirements.
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Goals

To answer the challenges of signal decoding in M-MIMO, we develop new
algorithms to match the high throughput of emerging massively parallel
architectures. Our goals:

▶ Low latency by exploiting the high density computing power of
Graphic Processing Unit (GPU) architectures.

▶ Near-optimal error rate by targeting ML solution.

▶ High data-rate by relaying on dense constellation and massive
number of antennas.

▶ Reduction in energy consumption by operating in a practical
SNR regime and relying on energy-efficient hardware.

Our proposed approach reports good error rate performance for 400×400
antennas under real-time requirements and practicable SNR.
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HPC-based existing works

▶ GPU-based approaches perform a partial or complete tree
exploration on GPU in a multi-thread way.

• induces a high thread-divergence and low scalability.

• overhead of managing a tree i.e. large number of data-structures.

• not usable for M-MIMO systems.

▶ CPU/FPGA Flexecore, multi-sphere

• multiple SD instances running in parallel.

• explores many paths to guarantee decent error rate performance.

• Relatively better success as compared to GPU-based approaches.

All existing approaches explore a large number of paths, leading to
memory-bound and instruction-bound issues. This induces a high
latency making these non-linear detection approaches non-suitable
for massive MIMO even when using massively parallel architectures.
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Proposed Multi-Level Approach (GML)

Our approach operates on the search tree that models all possible
combinations of the transmitted signal.

Generate partial paths Pi
from P for the next L levels
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Figure 5: Proposed signal detection
approach for M-MIMO.

▶ Combines
coefficient from multiple
levels to target ML solution.

▶ Casts this process
into matrix algebra operations.

▶ Relies on GPU
hardware accelerators to keep
practical time complexity.
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Proposed GML Approach

Multi-level technique
• Two main steps at 

each iteration 
• Matrix-matrix 

multiplication

• Sorting phase 
using a reduction 
process

exploiting the computing power of GPU resources and
its large number of processing elements e�ciently to
keep complexity within the acceptable range.
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Figure 2: Multi-level tree with three levels at a time L=3
for a 9⇥9 MIMO system with BPSK modulation.

Unlike Geosphere, multi-sphere, and K-best algo-
rithms [6]–[8], where they explore a large number of
paths, our approach construct only a single path P.
It extends P (empty initially) with several symbols at
each iteration until reaching a complete path. Thus, it
provides an estimation of the transmitted data. Indeed,
our algorithm operates on a search tree that contains
M levels (number of transmit antennas). Therefore, one
symbol is detected at each level starting from symbol
Sm�1 at level 1 to finally reach symbol S0 at level M.
Our idea is to combine multiple levels of the tree, which
means that the detection of multiple and successive
symbols is performed simultaneously. This allows to
extend a partial path P with L symbols at each iteration.
Despite the increase of the number of successors from
|⌦| to |⌦|L, combining the detection of L levels (symbols)
increases the accuracy in terms of error rate performance
and reduces the number of iterations of our multi-level
approach from M to M/L. Note that the last iteration is
performed with a less than L layers, if M/L is not integer.
The increase in accuracy is the result of combining the
coe�cients of multiple levels to accurately estimate the
transmitted symbol at each position. Otherwise, it is
more likely to fall in the wrong symbol due to the noise.
As depicted in Figure 2, starting from a partial path P
(initially empty), our approach creates |⌦|L partial paths
(Pi / i=1,.., |⌦|L) representing all possible combinations of
L symbols. After that, we calculate the partial distance
(PDi) for each partial path Pi using Equation 4. Next,
we extend P with the best partial path Pi in terms of
partial distance (minimum PDi). We repeate this process
until reaching the last level of the tree where solutions

exist. Finally, we return a complete path P as an ap-
proximate estimation of the transmitted signal. Note that
the number of iterations is equal to M/L. By increasing
the number of levels, our multi-level approach increases
the confidence in the following path to take by giving a
distinct PDi for each partial path. As a result, the more
levels we put, the more confident we are in getting the
ML solution. This allows using coe�cients of the next
lower levels to confirm which of these symbols is the
right one, i.e., this translates into a clear di↵erence in
terms of PD. As mentioned earlier, the more levels we

Figure 3: GPU architecture.

put together, the better is the accuracy in terms of error
rate. However, it also increases the complexity. To keep
practical time complexity and good error rate even for
a large constellation, we exploit the computing power
of GPU hardware. The GPU consists of a large number
of processing elements running at low frequency, which
allow accelerating scientific computing for a wide range
of applications without increasing the power consump-
tion. Indeed, a GPU device can be integrated into a
basestation without causing major change or increasing
the power budget of the basestation. All parts of our
Multi-level approach are implemented and executed on
GPU to avoid all data transfer over the slow PCIe bus.

IV. Results

In this section, we demonstrate the ability of our GPU-
based approach to deal with a significant number of an-
tennas under the extreme low latency of one millisecond
while ensuring a good error rate and high throughput.
The performance of our approach in terms of latency
and error rate is compared against the known MMSE
linear decoder. We performed our experiments using a
server with NVIDIA A100 GPU (Cuda 11.4 release) and
two-socket Intel IceLake CPU 2 GHz and 1024 GB of
main memory. To show the inherent complexity of the
detection process, we consider a point to point MIMO
with a perfect channel state information. Therefore, the

bers. We perform here a transformation from complex to real for the simple
reason that there is no GPU support for half-precision computation for complex
numbers. There are two ways to do the transformation. In the first way, we split
a complex matrix into two matrices, one matrix representing the real part and
the other one representing the imaginary part. This option creates an overhead
of managing two matrices instead of one. Thus, inducing an overhead in com-
putation and memory access. The other interesting option (preferred one) is to
replace each complex number with a 2 ⇥ 2 matrix. This option is depicted in
figure 4. Therefore, Matrix A with m rows and k column will be transformed to
a matrix with 2*m rows and 2*k columns. We do the same for matrices B and C.
Matrices B and C can have millions of columns. Thus a huge number of flops
and memory access. We can notice that matrix C (multiplication result) has
duplicated information (r1,i1), and (-i1,r1). Here, we exploit this redundancy
to cut down the number of flops and memory access in the multiplication by
half. In this way, we reduce the size of matrix B from 2k x 2n to 2k x n. likewise
for matrix C. This is important since the number of column of matrices B and
C can reach several millions. For instance, combining four levels with 64QAM
modulation generates a matrix B of size 2*4 X 2* 16777216.

Avoiding thread divergence:
Thread divergence appears when threads within the same warp don’t follow the
same instruction path (if-else), resulting in negative performance consequences.
The thread divergence situation is known when exploring trees on GPU since
the branching process has many if-else instructions.
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Figure 5: Branching.

Exploring a search tree and generating partial paths (successor nodes) at
each iteration represent a bottleneck on GPU since it involves many if-else

9

bers. We perform here a transformation from complex to real for the simple
reason that there is no GPU support for half-precision computation for complex
numbers. There are two ways to do the transformation. In the first way, we split
a complex matrix into two matrices, one matrix representing the real part and
the other one representing the imaginary part. This option creates an overhead
of managing two matrices instead of one. Thus, inducing an overhead in com-
putation and memory access. The other interesting option (preferred one) is to
replace each complex number with a 2 ⇥ 2 matrix. This option is depicted in
figure 4. Therefore, Matrix A with m rows and k column will be transformed to
a matrix with 2*m rows and 2*k columns. We do the same for matrices B and C.
Matrices B and C can have millions of columns. Thus a huge number of flops
and memory access. We can notice that matrix C (multiplication result) has
duplicated information (r1,i1), and (-i1,r1). Here, we exploit this redundancy
to cut down the number of flops and memory access in the multiplication by
half. In this way, we reduce the size of matrix B from 2k x 2n to 2k x n. likewise
for matrix C. This is important since the number of column of matrices B and
C can reach several millions. For instance, combining four levels with 64QAM
modulation generates a matrix B of size 2*4 X 2* 16777216.

Avoiding thread divergence:
Thread divergence appears when threads within the same warp don’t follow the
same instruction path (if-else), resulting in negative performance consequences.
The thread divergence situation is known when exploring trees on GPU since
the branching process has many if-else instructions.

Iteration 1

Iteration 2

Iteration 3

Root node

1 2 8 {S8, S7, S6}

1 82

82

{S5, S4, S3}

{S2, S1, S0}1

1

Matrix B

Matrix B

x

821

Matrix B

Matrix B

Iteration k

Figure 5: Branching.

Exploring a search tree and generating partial paths (successor nodes) at
each iteration represent a bottleneck on GPU since it involves many if-else

9

x

BR1

bers. We perform here a transformation from complex to real for the simple
reason that there is no GPU support for half-precision computation for complex
numbers. There are two ways to do the transformation. In the first way, we split
a complex matrix into two matrices, one matrix representing the real part and
the other one representing the imaginary part. This option creates an overhead
of managing two matrices instead of one. Thus, inducing an overhead in com-
putation and memory access. The other interesting option (preferred one) is to
replace each complex number with a 2 ⇥ 2 matrix. This option is depicted in
figure 4. Therefore, Matrix A with m rows and k column will be transformed to
a matrix with 2*m rows and 2*k columns. We do the same for matrices B and C.
Matrices B and C can have millions of columns. Thus a huge number of flops
and memory access. We can notice that matrix C (multiplication result) has
duplicated information (r1,i1), and (-i1,r1). Here, we exploit this redundancy
to cut down the number of flops and memory access in the multiplication by
half. In this way, we reduce the size of matrix B from 2k x 2n to 2k x n. likewise
for matrix C. This is important since the number of column of matrices B and
C can reach several millions. For instance, combining four levels with 64QAM
modulation generates a matrix B of size 2*4 X 2* 16777216.

Avoiding thread divergence:
Thread divergence appears when threads within the same warp don’t follow the
same instruction path (if-else), resulting in negative performance consequences.
The thread divergence situation is known when exploring trees on GPU since
the branching process has many if-else instructions.

Iteration 1

Iteration 2

Iteration 3

Root node

1 2 8 {S8, S7, S6}

1 82

82

{S5, S4, S3}

{S2, S1, S0}1

1

Matrix B

Matrix B

x

821

Matrix B

Matrix B

Iteration k

Figure 5: Branching.

Exploring a search tree and generating partial paths (successor nodes) at
each iteration represent a bottleneck on GPU since it involves many if-else

9

bers. We perform here a transformation from complex to real for the simple
reason that there is no GPU support for half-precision computation for complex
numbers. There are two ways to do the transformation. In the first way, we split
a complex matrix into two matrices, one matrix representing the real part and
the other one representing the imaginary part. This option creates an overhead
of managing two matrices instead of one. Thus, inducing an overhead in com-
putation and memory access. The other interesting option (preferred one) is to
replace each complex number with a 2 ⇥ 2 matrix. This option is depicted in
figure 4. Therefore, Matrix A with m rows and k column will be transformed to
a matrix with 2*m rows and 2*k columns. We do the same for matrices B and C.
Matrices B and C can have millions of columns. Thus a huge number of flops
and memory access. We can notice that matrix C (multiplication result) has
duplicated information (r1,i1), and (-i1,r1). Here, we exploit this redundancy
to cut down the number of flops and memory access in the multiplication by
half. In this way, we reduce the size of matrix B from 2k x 2n to 2k x n. likewise
for matrix C. This is important since the number of column of matrices B and
C can reach several millions. For instance, combining four levels with 64QAM
modulation generates a matrix B of size 2*4 X 2* 16777216.

Avoiding thread divergence:
Thread divergence appears when threads within the same warp don’t follow the
same instruction path (if-else), resulting in negative performance consequences.
The thread divergence situation is known when exploring trees on GPU since
the branching process has many if-else instructions.

Iteration 1

Iteration 2

Iteration 3

Root node

1 2 8 {S8, S7, S6}

1 82

82

{S5, S4, S3}

{S2, S1, S0}1

1

Matrix B

Matrix B

x

821

Matrix B

Matrix B

Iteration k

Figure 5: Branching.

Exploring a search tree and generating partial paths (successor nodes) at
each iteration represent a bottleneck on GPU since it involves many if-else

9

x

BR2

bers. We perform here a transformation from complex to real for the simple
reason that there is no GPU support for half-precision computation for complex
numbers. There are two ways to do the transformation. In the first way, we split
a complex matrix into two matrices, one matrix representing the real part and
the other one representing the imaginary part. This option creates an overhead
of managing two matrices instead of one. Thus, inducing an overhead in com-
putation and memory access. The other interesting option (preferred one) is to
replace each complex number with a 2 ⇥ 2 matrix. This option is depicted in
figure 4. Therefore, Matrix A with m rows and k column will be transformed to
a matrix with 2*m rows and 2*k columns. We do the same for matrices B and C.
Matrices B and C can have millions of columns. Thus a huge number of flops
and memory access. We can notice that matrix C (multiplication result) has
duplicated information (r1,i1), and (-i1,r1). Here, we exploit this redundancy
to cut down the number of flops and memory access in the multiplication by
half. In this way, we reduce the size of matrix B from 2k x 2n to 2k x n. likewise
for matrix C. This is important since the number of column of matrices B and
C can reach several millions. For instance, combining four levels with 64QAM
modulation generates a matrix B of size 2*4 X 2* 16777216.

Avoiding thread divergence:
Thread divergence appears when threads within the same warp don’t follow the
same instruction path (if-else), resulting in negative performance consequences.
The thread divergence situation is known when exploring trees on GPU since
the branching process has many if-else instructions.

Iteration 1

Iteration 2

Iteration 3

Root node

1 2 8 {S8, S7, S6}

1 82

82

{S5, S4, S3}

{S2, S1, S0}1

1

Matrix B

Matrix B

x

821

Matrix B

Matrix B

Iteration k

Figure 5: Branching.

Exploring a search tree and generating partial paths (successor nodes) at
each iteration represent a bottleneck on GPU since it involves many if-else

9

bers. We perform here a transformation from complex to real for the simple
reason that there is no GPU support for half-precision computation for complex
numbers. There are two ways to do the transformation. In the first way, we split
a complex matrix into two matrices, one matrix representing the real part and
the other one representing the imaginary part. This option creates an overhead
of managing two matrices instead of one. Thus, inducing an overhead in com-
putation and memory access. The other interesting option (preferred one) is to
replace each complex number with a 2 ⇥ 2 matrix. This option is depicted in
figure 4. Therefore, Matrix A with m rows and k column will be transformed to
a matrix with 2*m rows and 2*k columns. We do the same for matrices B and C.
Matrices B and C can have millions of columns. Thus a huge number of flops
and memory access. We can notice that matrix C (multiplication result) has
duplicated information (r1,i1), and (-i1,r1). Here, we exploit this redundancy
to cut down the number of flops and memory access in the multiplication by
half. In this way, we reduce the size of matrix B from 2k x 2n to 2k x n. likewise
for matrix C. This is important since the number of column of matrices B and
C can reach several millions. For instance, combining four levels with 64QAM
modulation generates a matrix B of size 2*4 X 2* 16777216.

Avoiding thread divergence:
Thread divergence appears when threads within the same warp don’t follow the
same instruction path (if-else), resulting in negative performance consequences.
The thread divergence situation is known when exploring trees on GPU since
the branching process has many if-else instructions.

Iteration 1

Iteration 2

Iteration 3

Root node

1 2 8 {S8, S7, S6}

1 82

82

{S5, S4, S3}

{S2, S1, S0}1

1

Matrix B

Matrix B

x

821

Matrix B

Matrix B

Iteration k

Figure 5: Branching.

Exploring a search tree and generating partial paths (successor nodes) at
each iteration represent a bottleneck on GPU since it involves many if-else

9

x

BR3

0 5 10 15 20
10�7

10�6

10�5

10�4

10�3

10�2

10�1

100

SNR

S
y

m
b

o
l

E
rr

o
r

R
a
te

(S
E

R
)

1 level

2 levels

3 level

4 level

5 levels

SD

0 5 10 15 20

10�3

10�2

10�1

100

SNR

D
e
c
o

d
in

g
T

im
e

(s
)

SD

5 levels

4 levels

1,2, and 3 levels

Figure 8: Comparing SD’ complexity and error rate with our GPU-based multi-
level approach for a 11 ⇥ 11 MIMO system with 16 QAM modulation.

Figure 8 illustrates the impact of increasing the number of combined levels
on the error rate and complexity of our approach. We compare our results
with the accuracy of the SD algorithm to show how far we are from optimal
results. The left-hand figure shows the good impact of increasing the number
of levels on the error rate performance. Indeed, the error rate of our multi-level
technique is quite close to the performance of the SD algorithm when using five
levels. However, if we look at the complexity (right-hand figure), we can see
a significant gap in complexity between the two approaches. Indeed, The SD
algorithm enumerates all possible combinations of the transmitted signal which
results in a massive number of explored paths, especially for SNR ranging from
0 to 15 dB. This is not the case of our approach which combines multiple levels
to target the best paths in search tree. This results in a limited number explored
paths. Thus, demonstrating low latency while achieving high accuracy. By
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Figure 9: Time partition of di↵erent kernels (single precision) of our approach
for a 100 ⇥ 100 MIMO system with 64 QAM modulation and four levels.
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Grouping the detection of L symbols

▶ Matrix-matrix
multiplication R′ × B.

▶ High accuracy by using
coefficients from different levels.

▶ Avoid error propagation.
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Proposed GML Approach

The evaluation is incremental

E(Pi ) =

Li∑
k=1

gk(sM−1, ..., sM−k)

=

︷ ︸︸ ︷
L∑

k=1

gk(sM−1, ..., sM−k)︸ ︷︷ ︸
E(P)

+

Li∑
k=L+1

gk(sM−1, ..., sM−k).︸ ︷︷ ︸
non-computed part

(5)

Author Title June 14, 2022 13 / 22



Proposed GML Approach
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Figure 2: Multi-level tree with three levels at a time L=3
for a 9⇥9 MIMO system with BPSK modulation.

Unlike Geosphere, multi-sphere, and K-best algo-
rithms [6]–[8], where they explore a large number of
paths, our approach construct only a single path P.
It extends P (empty initially) with several symbols at
each iteration until reaching a complete path. Thus, it
provides an estimation of the transmitted data. Indeed,
our algorithm operates on a search tree that contains
M levels (number of transmit antennas). Therefore, one
symbol is detected at each level starting from symbol
Sm�1 at level 1 to finally reach symbol S0 at level M.
Our idea is to combine multiple levels of the tree, which
means that the detection of multiple and successive
symbols is performed simultaneously. This allows to
extend a partial path P with L symbols at each iteration.
Despite the increase of the number of successors from
|⌦| to |⌦|L, combining the detection of L levels (symbols)
increases the accuracy in terms of error rate performance
and reduces the number of iterations of our multi-level
approach from M to M/L. Note that the last iteration is
performed with a less than L layers, if M/L is not integer.
The increase in accuracy is the result of combining the
coe�cients of multiple levels to accurately estimate the
transmitted symbol at each position. Otherwise, it is
more likely to fall in the wrong symbol due to the noise.
As depicted in Figure 2, starting from a partial path P
(initially empty), our approach creates |⌦|L partial paths
(Pi / i=1,.., |⌦|L) representing all possible combinations of
L symbols. After that, we calculate the partial distance
(PDi) for each partial path Pi using Equation 4. Next,
we extend P with the best partial path Pi in terms of
partial distance (minimum PDi). We repeate this process
until reaching the last level of the tree where solutions

exist. Finally, we return a complete path P as an ap-
proximate estimation of the transmitted signal. Note that
the number of iterations is equal to M/L. By increasing
the number of levels, our multi-level approach increases
the confidence in the following path to take by giving a
distinct PDi for each partial path. As a result, the more
levels we put, the more confident we are in getting the
ML solution. This allows using coe�cients of the next
lower levels to confirm which of these symbols is the
right one, i.e., this translates into a clear di↵erence in
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put together, the better is the accuracy in terms of error
rate. However, it also increases the complexity. To keep
practical time complexity and good error rate even for
a large constellation, we exploit the computing power
of GPU hardware. The GPU consists of a large number
of processing elements running at low frequency, which
allow accelerating scientific computing for a wide range
of applications without increasing the power consump-
tion. Indeed, a GPU device can be integrated into a
basestation without causing major change or increasing
the power budget of the basestation. All parts of our
Multi-level approach are implemented and executed on
GPU to avoid all data transfer over the slow PCIe bus.

IV. Results

In this section, we demonstrate the ability of our GPU-
based approach to deal with a significant number of an-
tennas under the extreme low latency of one millisecond
while ensuring a good error rate and high throughput.
The performance of our approach in terms of latency
and error rate is compared against the known MMSE
linear decoder. We performed our experiments using a
server with NVIDIA A100 GPU (Cuda 11.4 release) and
two-socket Intel IceLake CPU 2 GHz and 1024 GB of
main memory. To show the inherent complexity of the
detection process, we consider a point to point MIMO
with a perfect channel state information. Therefore, the
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modulation generates a matrix B of size 2*4 X 2* 16777216.
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Thread divergence appears when threads within the same warp don’t follow the
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Figure 8: Comparing SD’ complexity and error rate with our GPU-based multi-
level approach for a 11 ⇥ 11 MIMO system with 16 QAM modulation.

Figure 8 illustrates the impact of increasing the number of combined levels
on the error rate and complexity of our approach. We compare our results
with the accuracy of the SD algorithm to show how far we are from optimal
results. The left-hand figure shows the good impact of increasing the number
of levels on the error rate performance. Indeed, the error rate of our multi-level
technique is quite close to the performance of the SD algorithm when using five
levels. However, if we look at the complexity (right-hand figure), we can see
a significant gap in complexity between the two approaches. Indeed, The SD
algorithm enumerates all possible combinations of the transmitted signal which
results in a massive number of explored paths, especially for SNR ranging from
0 to 15 dB. This is not the case of our approach which combines multiple levels
to target the best paths in search tree. This results in a limited number explored
paths. Thus, demonstrating low latency while achieving high accuracy. By
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Figure 9: Time partition of di↵erent kernels (single precision) of our approach
for a 100 ⇥ 100 MIMO system with 64 QAM modulation and four levels.
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exploiting the computing power of GPU resources and
its large number of processing elements e�ciently to
keep complexity within the acceptable range.
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Figure 2: Multi-level tree with three levels at a time L=3
for a 9⇥9 MIMO system with BPSK modulation.

Unlike Geosphere, multi-sphere, and K-best algo-
rithms [6]–[8], where they explore a large number of
paths, our approach construct only a single path P.
It extends P (empty initially) with several symbols at
each iteration until reaching a complete path. Thus, it
provides an estimation of the transmitted data. Indeed,
our algorithm operates on a search tree that contains
M levels (number of transmit antennas). Therefore, one
symbol is detected at each level starting from symbol
Sm�1 at level 1 to finally reach symbol S0 at level M.
Our idea is to combine multiple levels of the tree, which
means that the detection of multiple and successive
symbols is performed simultaneously. This allows to
extend a partial path P with L symbols at each iteration.
Despite the increase of the number of successors from
|⌦| to |⌦|L, combining the detection of L levels (symbols)
increases the accuracy in terms of error rate performance
and reduces the number of iterations of our multi-level
approach from M to M/L. Note that the last iteration is
performed with a less than L layers, if M/L is not integer.
The increase in accuracy is the result of combining the
coe�cients of multiple levels to accurately estimate the
transmitted symbol at each position. Otherwise, it is
more likely to fall in the wrong symbol due to the noise.
As depicted in Figure 2, starting from a partial path P
(initially empty), our approach creates |⌦|L partial paths
(Pi / i=1,.., |⌦|L) representing all possible combinations of
L symbols. After that, we calculate the partial distance
(PDi) for each partial path Pi using Equation 4. Next,
we extend P with the best partial path Pi in terms of
partial distance (minimum PDi). We repeate this process
until reaching the last level of the tree where solutions

exist. Finally, we return a complete path P as an ap-
proximate estimation of the transmitted signal. Note that
the number of iterations is equal to M/L. By increasing
the number of levels, our multi-level approach increases
the confidence in the following path to take by giving a
distinct PDi for each partial path. As a result, the more
levels we put, the more confident we are in getting the
ML solution. This allows using coe�cients of the next
lower levels to confirm which of these symbols is the
right one, i.e., this translates into a clear di↵erence in
terms of PD. As mentioned earlier, the more levels we

Figure 3: GPU architecture.

put together, the better is the accuracy in terms of error
rate. However, it also increases the complexity. To keep
practical time complexity and good error rate even for
a large constellation, we exploit the computing power
of GPU hardware. The GPU consists of a large number
of processing elements running at low frequency, which
allow accelerating scientific computing for a wide range
of applications without increasing the power consump-
tion. Indeed, a GPU device can be integrated into a
basestation without causing major change or increasing
the power budget of the basestation. All parts of our
Multi-level approach are implemented and executed on
GPU to avoid all data transfer over the slow PCIe bus.

IV. Results

In this section, we demonstrate the ability of our GPU-
based approach to deal with a significant number of an-
tennas under the extreme low latency of one millisecond
while ensuring a good error rate and high throughput.
The performance of our approach in terms of latency
and error rate is compared against the known MMSE
linear decoder. We performed our experiments using a
server with NVIDIA A100 GPU (Cuda 11.4 release) and
two-socket Intel IceLake CPU 2 GHz and 1024 GB of
main memory. To show the inherent complexity of the
detection process, we consider a point to point MIMO
with a perfect channel state information. Therefore, the

bers. We perform here a transformation from complex to real for the simple
reason that there is no GPU support for half-precision computation for complex
numbers. There are two ways to do the transformation. In the first way, we split
a complex matrix into two matrices, one matrix representing the real part and
the other one representing the imaginary part. This option creates an overhead
of managing two matrices instead of one. Thus, inducing an overhead in com-
putation and memory access. The other interesting option (preferred one) is to
replace each complex number with a 2 ⇥ 2 matrix. This option is depicted in
figure 4. Therefore, Matrix A with m rows and k column will be transformed to
a matrix with 2*m rows and 2*k columns. We do the same for matrices B and C.
Matrices B and C can have millions of columns. Thus a huge number of flops
and memory access. We can notice that matrix C (multiplication result) has
duplicated information (r1,i1), and (-i1,r1). Here, we exploit this redundancy
to cut down the number of flops and memory access in the multiplication by
half. In this way, we reduce the size of matrix B from 2k x 2n to 2k x n. likewise
for matrix C. This is important since the number of column of matrices B and
C can reach several millions. For instance, combining four levels with 64QAM
modulation generates a matrix B of size 2*4 X 2* 16777216.

Avoiding thread divergence:
Thread divergence appears when threads within the same warp don’t follow the
same instruction path (if-else), resulting in negative performance consequences.
The thread divergence situation is known when exploring trees on GPU since
the branching process has many if-else instructions.
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Thread divergence appears when threads within the same warp don’t follow the
same instruction path (if-else), resulting in negative performance consequences.
The thread divergence situation is known when exploring trees on GPU since
the branching process has many if-else instructions.
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Figure 5: Branching.

Exploring a search tree and generating partial paths (successor nodes) at
each iteration represent a bottleneck on GPU since it involves many if-else
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Figure 8: Comparing SD’ complexity and error rate with our GPU-based multi-
level approach for a 11 ⇥ 11 MIMO system with 16 QAM modulation.

Figure 8 illustrates the impact of increasing the number of combined levels
on the error rate and complexity of our approach. We compare our results
with the accuracy of the SD algorithm to show how far we are from optimal
results. The left-hand figure shows the good impact of increasing the number
of levels on the error rate performance. Indeed, the error rate of our multi-level
technique is quite close to the performance of the SD algorithm when using five
levels. However, if we look at the complexity (right-hand figure), we can see
a significant gap in complexity between the two approaches. Indeed, The SD
algorithm enumerates all possible combinations of the transmitted signal which
results in a massive number of explored paths, especially for SNR ranging from
0 to 15 dB. This is not the case of our approach which combines multiple levels
to target the best paths in search tree. This results in a limited number explored
paths. Thus, demonstrating low latency while achieving high accuracy. By

Matrix-Matrix multiplication

77%

matrix-vector multiplication

5% norm-sorting kernel

18%

Figure 9: Time partition of di↵erent kernels (single precision) of our approach
for a 100 ⇥ 100 MIMO system with 64 QAM modulation and four levels.
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Performance and Complexity Results

▶ Achieving near optimal sphere decoder results with low fixed
complexity.
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Figure 6: Comparing SD results with our multi-level approach (GML) for a
11× 11 MIMO system with 16-QAM modulation.
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Performance and Complexity Results
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Figure 7: Complexity, modulation, and throughput versus the number of
antennas for our GML approach.

With Ultra-low latency of 5G (1ms)

▶ Our approach supports Up to 60 antennas using 64-QAM and 120
antennas with 16-QAM.

▶ 4.5× throughput increase compared to linear MMSE.
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Figure 8: Increasing the number of antennas.
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results

▶ Up to 93 times faster than a similar reference CPU implementation
on Intel IceLake.
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(b) Speedup of our GPU multi-level approaches.
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Figure 9: Varying the number of levels: Complexity and error rate for a
100× 100 MIMO system with 64-QAM modulation.
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Scalability Results (2.3 ms latency)
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Figure 10: Bits per transmission Vs. modulation for a 128× 128 MIMO system
with three levels.
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Throughput performance
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Figure 11: Throughput Vs. modulation for a 128× 128 MIMO system
(SNR=22 dB).
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Conclusion

▶ Up to 8× throughout improvement compared to Linear MMSE
algorithm at a practical SNR.

▶ The importance of designing new algorithms on new HPC hardware
is critical to meet the requirements for next-generation wireless
communication networks.

Approach Latency Nb antennas Low Error rate SNR
Multi-sphere [2] >10 ms 16 ++ 25 dB
Flexcore [1] >10 ms 12 ++ 22 dB
MMSE <10 ms ±600 - 35 dB
Our approach < 10 ms 400 +++ 21 dB

Table 1: Our approach vs. existing works for uncoded MIMO system with
64-QAM modulation.
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Thank you!
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