

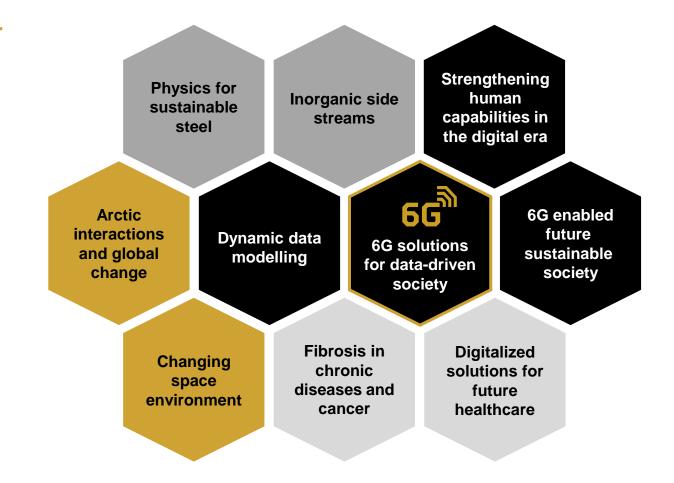
From 5GTN to 6GTN – Three Pronged Approach

Prof. Ari Pouttu University of Oulu

Kindly presented by

Prof Riku Jäntti Aalto University

But first ...

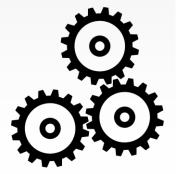

6G Flagship – Results of Phase 1 in a Nutsell

At the heart of Oulu University's research profile

- 6G Flagship program 2018-2026.
- 6G Flagship budget total will be 292,2M€
- Academy of Finland and University of Oulu the biggest financers.
- University of Oulu's funding 123,3M€ during 2018-2028.

Strategic profiling themes at the University of Oulu.

KPIs 2018 – 2022


Science

- 1,891 Peer-reviewed Publications
- 24,7% Publications in Top 10% citation percentile
- 2,29 Field-weighted Citation Impact (FWCI)
- 1244 (65,8%) Joint international publications
- 1,803 Open access / self-archived publications
- **73** Doctoral degrees
- 265,416 Doctoral thesis downloads
- **3** ERC Advanced Grants
- 2 Academy of Finland Professors

Co-creation and business impact

- 337 Research projects, external funding
- **428** Company collaborators
- 140 Companies funding projects
- **221** Joint publications with companies
- 7,575 participants in co-creation forums
- 994,579 6G White Paper downloads
- 170,000 Vision video downloads

Societal impact

8,501 Social media followers

■ 1,189,185 Tweet views

5,738 Articles in independent media

309,995 6G Waves downloads

Staff

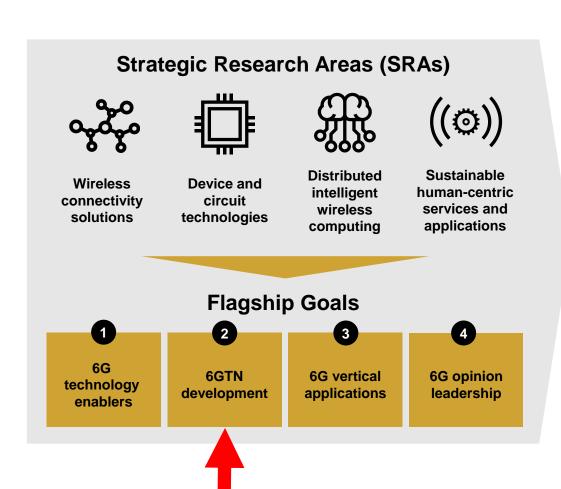
446 Staff (20% female)

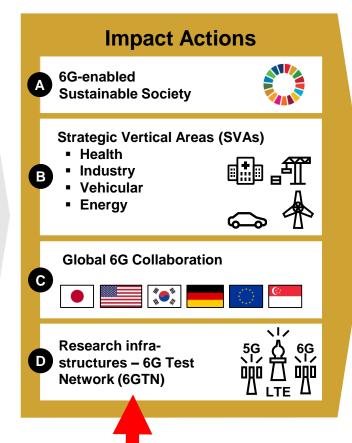
48 Nationalities (44% Finns)

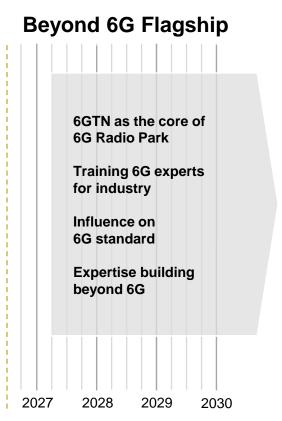
32 Professors and tenures

VISION FOR 6G FLAGSHIP PHASE II (2022 - 2026)

And second ...


6G Flagship – Approach for Phase 2 - 2022-2026





Overview of Flagship Phase II

SRA 1 – Structure

LEADER Prof. Matti Latva-aho

SRA1 Wireless Connectivity

COORDINATOR

Dr. Nurul Huda Mahmood

THEME A Advanced Networking Technologies

LEADERProf. Tarik Taleb

KEYWORDS

- 6G Core, Telco Cloud
- Edge Cloud Fabric/Continuum
- AI-Synthesized Networking
- Trust & Security

LEADER

Prof. Matti Latva-aho

KEYWORDS

- Modulation and coding
- Millimeter wave and terahertz
- Massive MIMO techniques

THEME C Massive Wireless Automation

LEADER

Asc. Prof. Hirley Alves

- Resilient communications
- Massive machine type communications
- Sustainable IoT

SRA 2 – Structure

LEADER Prof. Aarno Pärssinen

SRA2 Devices and Circuit Technologies

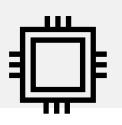
COORDINATORAssoc. Prof. Ping Jack Soh

THEME A Radio platforms

LEADERProf. Aarno Pärssinen

KEYWORDS

- Radio platform system design
- Hardware architectures
- Signal processing



THEME B Radio hardware

LEADERProf. Timo Rahkonen

KEYWORDS

- Radio-frequency integrated circuits
- Digital signal processing hardware
- Components, antennas, packaging and materials

THEME C Experiments and proofs of concept

LEADERDSc Tech. Marko Leinonen

- Proofs of concept
- Radio frequency testing
- Fabrication technologies

SRA 3 – Structure

LEADER Prof. Olli Silvén

SRA3 Distributed Intelligence

COORDINATOR Assoc. Prof. Miguel Bordallo López

THEME A Computing on edge-to-cloud continuum

LEADERResearch Director Susanna Pirttikangas

KEYWORDS

- Distributed computing
- Dynamic node placement
- Al-for-edge, edge-for-Al

THEME B Distributed Al

LEADERAssist. Prof.

Sumudu Samarakoon

KEYWORDS

- Distributed inference
- Privacy-preserving AI
- Self-organizing architecture

THEME C Distributed Sensing and Modelling

LEADERProf. Janne Heikkilä

- Coordinated sensing & communication
- Multimodal 3D modeling
- Data locality

SRA 4 – Structure

LEADER Prof. Ari Pouttu

Human-centric Wireless Services

COORDINATOR
Dr. Tuomo Hänninen

THEME A 5GTN to 6GTN

LEADEROlli Liinamaa

KEYWORDS

- 5G NSA, 5G SA, 6G Core
- Open and Multi Access Edge Computing
- Multiple RATs

THEME B Strategic Vertical Areas

LEADER

Adj. Prof. Jussi Haapola

KEYWORDS

- Wireless for Energy
- Wireless for Health
- Wireless for Industry
- Wireless for Vehicular

THEME C Sustainability and Business

LEADER

Dr. Marja Matinmikko-Blue

- Future 6G enabled Business
- Sustainable development and 6G
- Regulation for 6G

And now

From 5GTN to 6GTN - Three Pronged Approach

Prof. Ari Pouttu University of Oulu

Kindly presented by

Prof Riku Jäntti Aalto University

Test Network - key tool for co-creation

SLICES-RI: 15 countries (https://slices-ri.eu/)

First open test network (https://services.5gtn.fi/).

5G mmW trials in Olympics with ETRI and Nokia

Operator grade live 5G microoperator network

FIRI roadmap

Selection to AoF Selection to ESFRI FIRI roadmap

First 6G **PoC devices**

First 6G "network"

6G Standardization begins

2015

2018

2019

2020

2021

2023

2025

2026

5GTN

4G-LTE

5G PoC

5G NR

6GTN

LTE small cell @2.1 and 2.6 GHz

5G PoC/5GNR

5G Macros at 3.5GHz For IoT - NB IoT/LTE-M

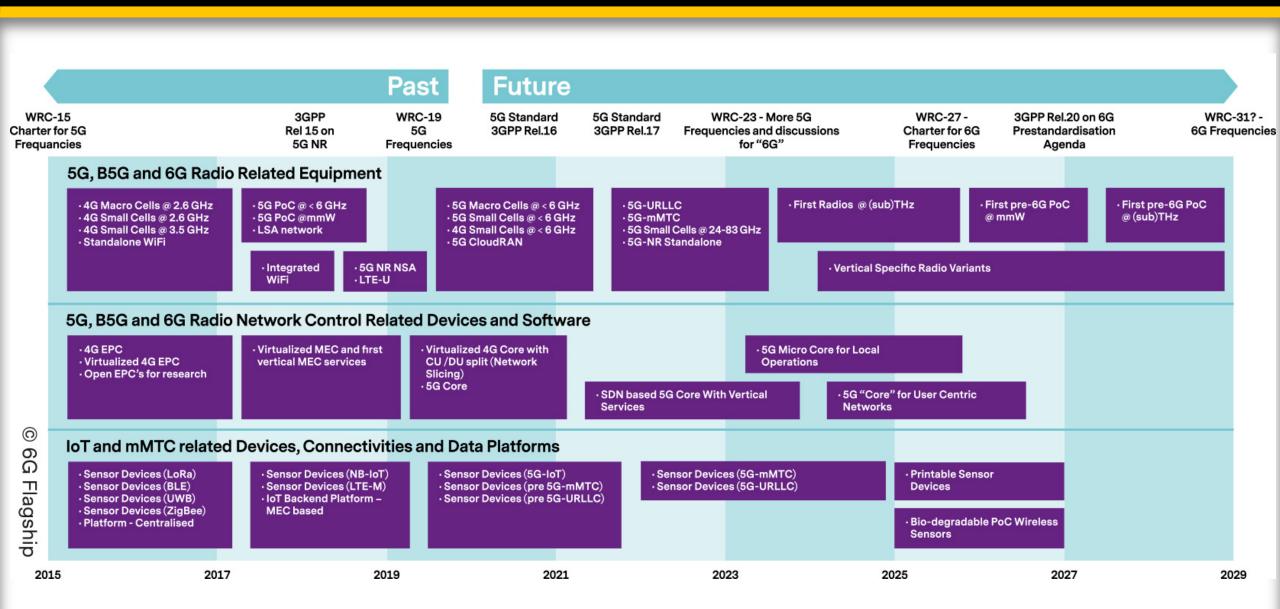
Cloud RAN based 5G @3.5GHz

5GNR @24 GHz

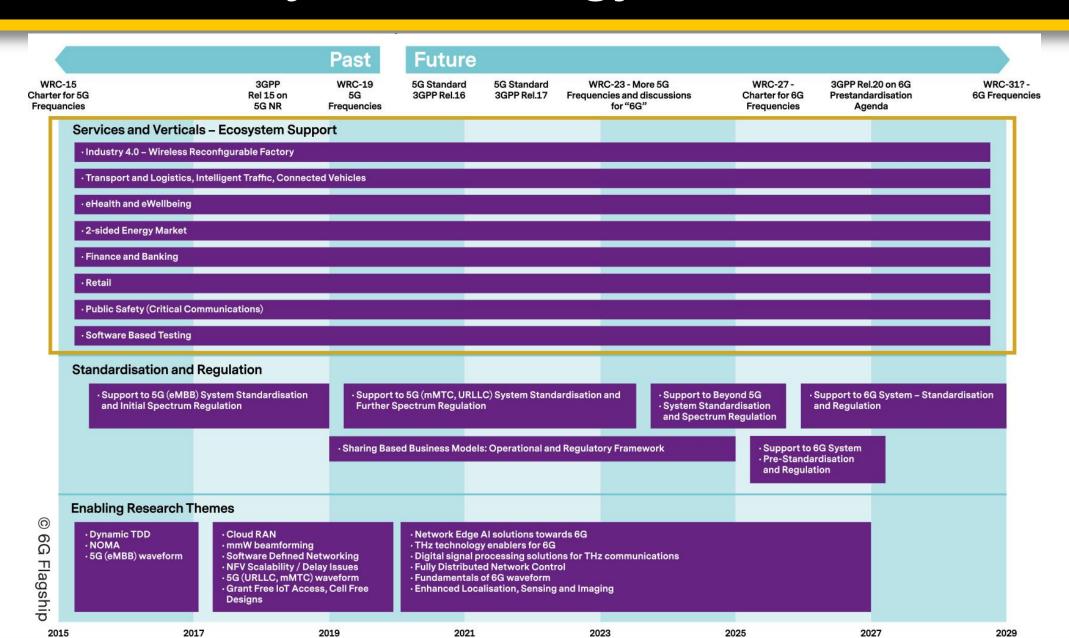
Next steps: Three development avenues

Providing e.g. coverage, medium data rate, latency & Jitter, zero carbon footprint solutions, RedCap Devices

3GPP path Rel. 17...Rel. 20


Providing e.g. low capex with moderate performance, high opex, studying security, energy consumption, jitter/latency perf., stability

O-RAN path


Providing e.g. 1 Tpbs, joint com&sensing, low latency and jitter, sub-cm positioning, reflective surfaces, Sub-THz transceivers

Disruptive 6G path

Starting the journey towards 6G ...

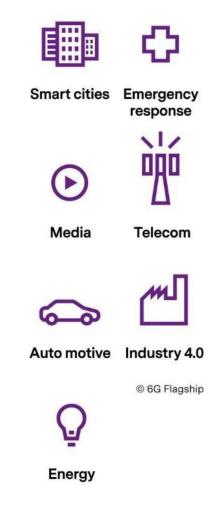
... but it's not just technology

Why bother with experimental test networks?

Answer: Versatility of Vertical Requirements

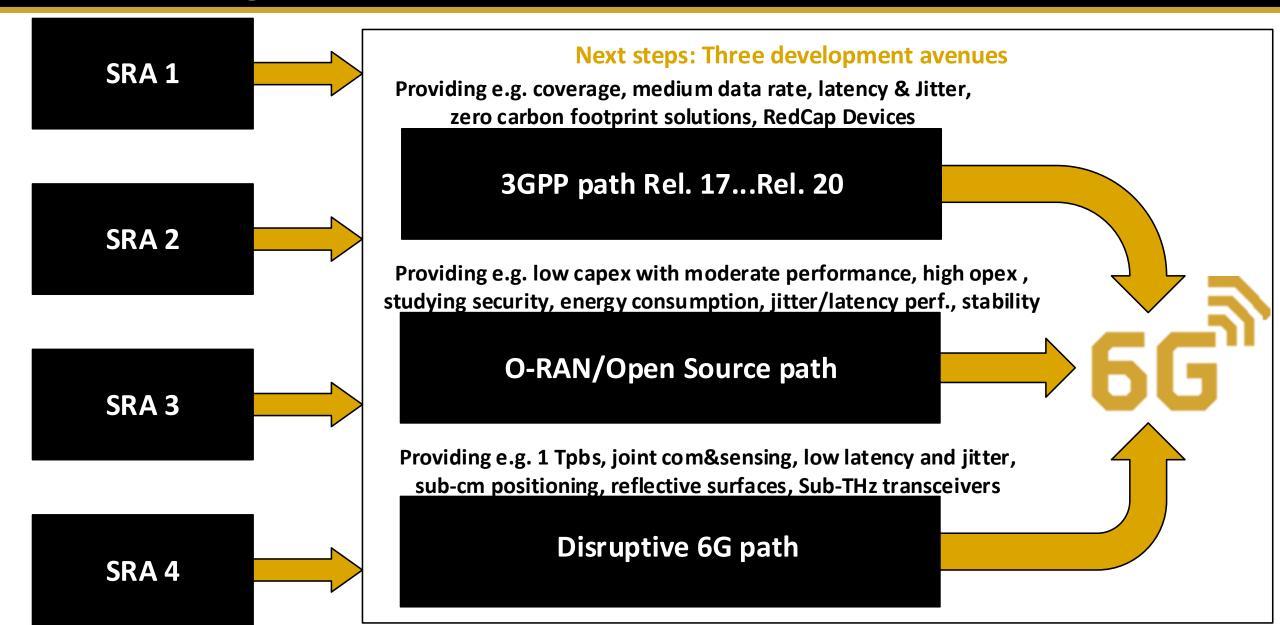
Evamples of KPIs for verticals

Examples of KPIS for verticals											
Vertical	Link DataRate	Latency	LinkBudg et	Jitter	Density	Energy Efficiency	Reliability	Capacity	Mobility		
Industry mMTC	< 1 Mbps	< 100ms	+ 10 dB	100 µs	100/m³	High	1-10-6	< 10 Gbps	240 km/h		
Industry eURLLC	< 5 Mbps	< 100 µs	+ 20 dB	< 1 µs	10/m³	Nominal	1-10-9	< 100 Mbps	240 km/h		
Mobility	<10 Gbps	< 100 µs	+ 20 dB	100 µs	100/m³	Nominal	1-10-7	1 Tbps	1200 km/h		
eHealth	< 1 Gbps	< 1 ms	+ 10 dB	100 µs	1/ m ³	High	1-10-9	< 10 Gbps	240 km/h		
Energy	<1 Mbps	< 500 µs	+ 40 dB	< 1 µs	10/m³	Nominal	1-10-6	< 100 Mbps	N/A		
Finance	< 1 Gbps	< 10 ms	varies	N/A	1/m³	High	1-10-9	< 10 Gbps	Low		
Public Safety	<1 Gbps	< 1 ms	+ 20 dB	100 µs	1/m³	Nominal	1-10-7	< 10 Gbps	240 km/h		
Agri- business	100 Mbps	< 10 ms	+ 40 dB	100 µs	100/km²	Nominal	1-10-7	1 Gbps	240 km/h		


How do we facilitate service pull and avoid technology push!

Versatility of Vertical Requirements

Examples of Key Performance Indicators (KPIs) for verticals*


Vertical	Cost Importance	Position	RF Imaging Resolution	EMF values	Security	Coverage
Industry mMTC	High	< 1 cm	Nominal	Nominal	Nominal	< 1km
Industry eURLLC	Nominal	< 1cm	High	Nominal	High	< 50m
Mobility	Nominal	< 10 cm	High	High	High	< 10 km
eHealth	High	< 1 cm	High	Nominal	High	< 500 m
Energy	Nominal	< 1 m	Low	Nominal	High	< 1 km
Finance	High	< 1 m	High (biometrics)	Nominal	High	< 500 m
Public Safety	Nominal	< 10 cm	High	Low	High	> 10 km
Agri-business	High	< 10 cm	High (Precision agriculture)	Low	High	> 50 km

Transition to higher frequencies and increasing role of indoor networks will boost network sharing in cities and indoor spaces, and drive the complementary "local operator" paradigm.

And to best support the versatility – Three-Pronged Development Path for our test platform

Thank you!

