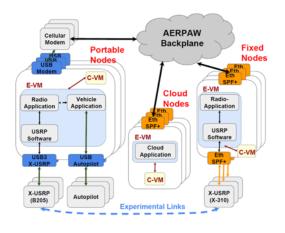


AERPAW Platform

A Testbed for versatile mobile NextG Research


First IEEE NextG Summit June, 2022

Rudra Dutta, NC State University

NC STATE UNIVERSITY

X AERPAW Project Vision and Scope

- Funding: 3rd NSF PAWR project awarded in Sep. 2019
- → Project Team: NC State University, WRC, Mississippi State University, RENCI, Purdue University, University of South Carolina
- → AERPAW Vision: Serve as a unique technological infrastructure, to be used by advanced wireless and UAS researchers
- Project Heart: Programmable radios, programmable UAS, on a programmable network

X Team and Partners

Senior Personnel


Lavanya Sridharan NC State (Project Coordinator)

Ed Rogers NC State (installations and permits)

Ozgur Ozdemir NC State (SDRs, Keysight, Facebook TG)

Ismail Guvenc Pl. NC State (SDRs, 4G/5G

Rudra Dutta NC State (SDN. standards, PHY/MAC) architecture, CentMesh)

NC State (drones. architecture, CentMesh)

Brian Floyd NC State (mmW circuits, arrays)

Tom Zajkowski NC State (UAS operations, FAA permitting)

Magreth Mushi NC State (Network Architecture, Platform Operations)

Mike Barts WRC (RF, Towers, Antennas, Front Ends)

Asokan Ram WRC (4G/5G Ericsson deployment)

Vuk Marojevic MSU (security, SDRs, waveforms, CORNET)

Gerard Hayes NC State, WRC (wireless and testing)

(data models, software architecture control framework)

David W. Matolak USC (aerial propagation. waveforms)

Purdue (MIMO, SDRs. agriculture)

Turker Yilmaz NC State (SDRs and mmWave Development)

Municipality and Government Partners

Town of Cary

Other Personnel:

- Postdoctoral Scholars: Talha F. Rahman, Ender Ozturk
- PhD Students: Keith Powell, Anil Gurses, Aly Abdalla, Andrew Yingst, Daniel Brennan, Simran Singh,
- MS Students: Ashwin Panicker, Vedashree Chaphekar, Udita Bhattacherjee, Jonah Gandy, Ananya Nunna
- Other WRC and RENCI Personnel: Thomas Hoover, Michael Stealey, Erica Fu, Erik Scott, Hannah Hiles
- ITRE Aviation Personnel/Pilots: Evan Arnolds, Shawn Deardorff, Michael Picinich
- Undergrad Students: Mark Funderburk, John Kessler, Keshav Sridhar, Byron Qi, Joshua Moore

AERPAW Project Timeline and General Availability

Phase 0 + Phase 1 Goals (Sep. 2019 – Nov. 2021)

General Availability:

- 3 Fixed SDR Nodes
- 3 Portable SDR Nodes
- 2 UAVs, 1 UGV
- Experiment Portal
- Initial SDR and Vehicle Control Profiles

Initial Deployment & Testing:

- Keysight RF Sensors
- 6 Terragraph Radios
- LoRa Dongles/Gateways
- Fortem Radar
- 1 Ericsson 4G/5G BS & UEs
- · Keysight Propsim Emulator

(Nov. 2021 – Nov. 2022)

General Availability:

- 8 Fixed SDR Nodes
- 13 Portable SDR Nodes
- 6 UAVs, 4 UGVs
- Experiment Portal
- 5 Keysight RF Sensors
- Keysight Propsim Emulator
- 6 Terragraph Radios
- LoRa Dongles/Gateways
- Fortem Radar
- Ericsson 4G/5G BSs/UEs

Initial Deployment & Testing:

- Interdigital mmWave SDRs
- IsoBLUE Radios

(Nov. 2022 – Nov. 2023) General Availability:

Phase 3 Goals

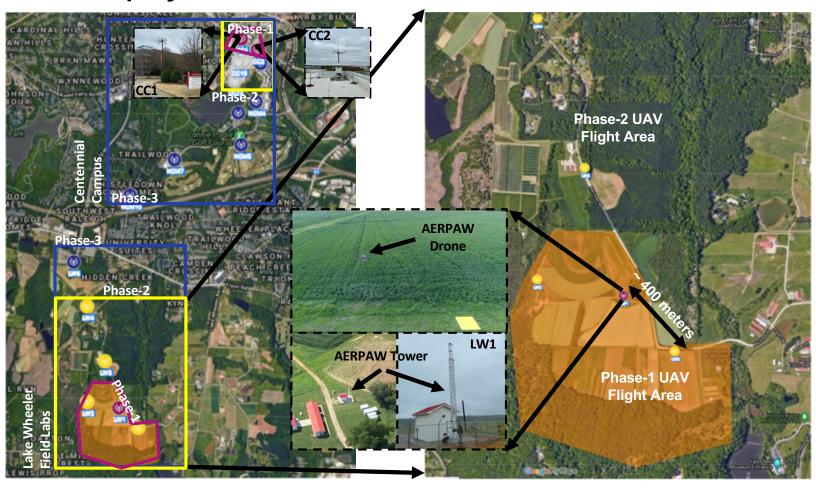
- 16 Fixed SDR Nodes
- 23 Portable SDR Nodes
- 10 UAVs, 6 UGVs, 1 Helikite
- Experiment Portal
- 5 Keysight RF Sensors
- Keysight Propsim Emulator
- 6 Terragraph Radios
- LoRa Dongles/Gateways
- Fortem Radar
- 5 Ericsson 4G/5G BSs/UEs
- Interdigital mmWave SDRs
- IsoBLUE Radios

Nov. 2023 – Nov. 2024 General Availability:

Phase 4 Goals

- 16 Fixed SDR Nodes
- 23 Portable SDR Nodes
- 10 UAVs, 6 UGVs, 1 Helikite
- Experiment Portal
- 5+ Keysight RF Sensors
- Keysight Propsim Emulator
- 6 Terragraph Radios
- LoRa Dongles/Gateways
- Fortem Radar
- 5 Ericsson 4G/5G BSs/UEs
- Interdigital mmWave SDRs
- IsoBLUE Radios

Phase 5 Goals Nov. 2024 – Nov. 2025

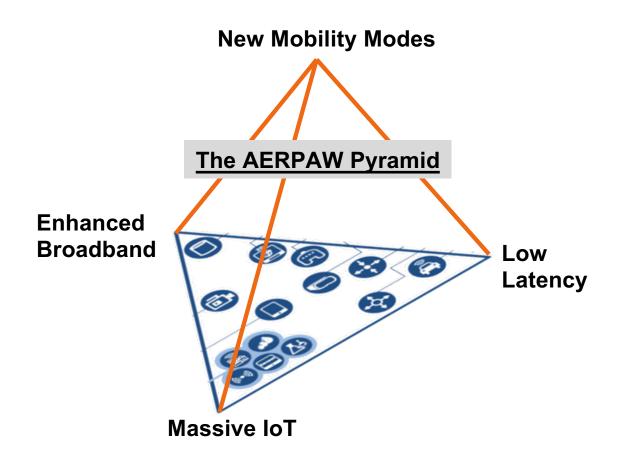

General Availability:

- 16 Fixed SDR Nodes
- 23 Portable SDR Nodes
- 10 UAVs, 6 UGVs, 1 Helikite
- Experiment Portal
- 5+ Keysight RF Sensors
- Keysight Propsim Emulator
- 6 Terragraph Radios
- LoRa Dongles/Gateways
- Fortem Radar
- 5 Ericsson 4G/5G BSs/UEs
- Interdigital mmWave SDRs
- IsoBLUE Radios

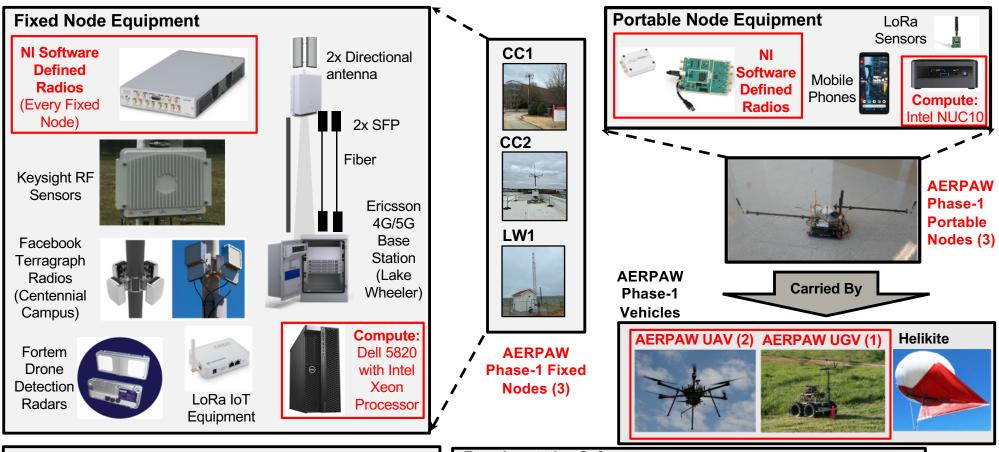
Phase-4 and Phase-5: Full-Scale Platform Operations

Will support bring-your-own-device (BYOD) experiments on a case-by-case basis

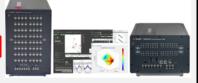
AERPAW Deployment Areas


Late 2021 (Phase-1, 3 new fixed nodes)

Late 2022 (Phase-2, 5 new fixed nodes)

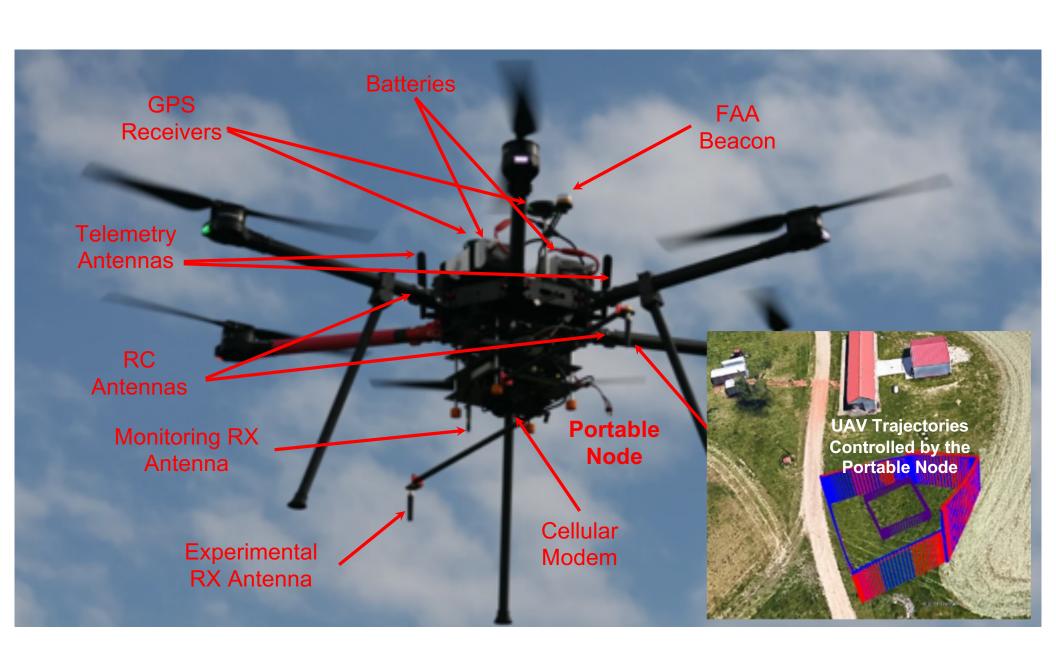

Late 2023 (Phase-3, 8 new fixed nodes)

AERPAW's Vision for a New Paradigm

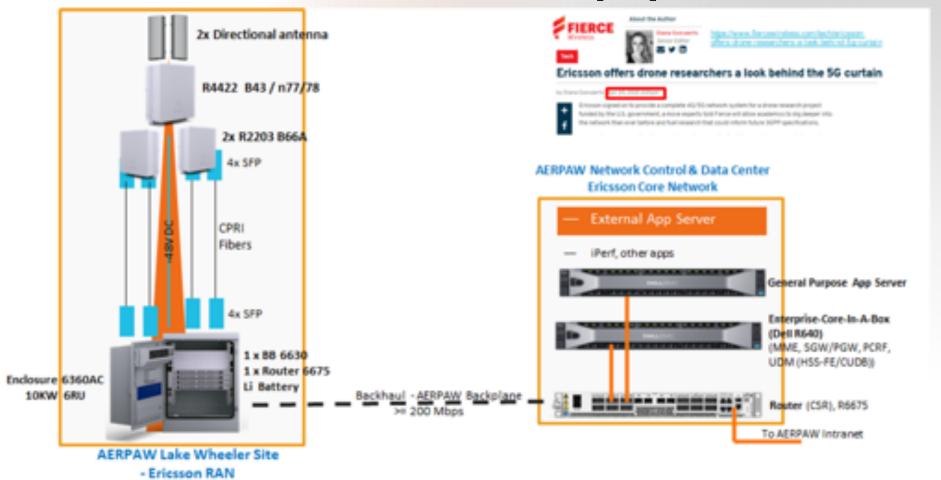


- Advanced wireless to enable new UAS capabilities
- Advanced UAS to enable new wireless services
- Will also support other fixed and mobile experiments

Sandbox


- Keysight Propsim Channel Emulator (32 Ports)
- Wireless and drone emulation
- Cabled testing

Experimentation Software


- USRPs: OpenAirInterface, srsLTE, GNU Radio Matlab
- Other software by Keysight, Facebook, Ericsson, Facebook, LoRa
- Experiments run on containers at fixed/portable nodes, both in development and testbed experiment modes

Indicates Phase-1 General Availability

AERPAW Ericsson Equipment

AERPAW Ericsson Equipment

4G LTE Network

- 2-sectors, each sector with 2x2 MIMO in Band 43 (3.6-3.8 GHz) and B66A (1.7/2.1 GHz)
- 3GPP Release 13 compliant
- Different bandwidths 5, 10, 15, 20 MHz
- Different MIMO modes (TM2 Transmit Diversity, TM3 Open-loop 2x2 MIMO, TM4 Closed-loop 2x2 MIMO)
- Carrier aggregation
- Channel quality (CSI/PMI/RI) performance
- Link adaptation
- Various RRC procedures
- Cell-selection/Re-selection, Re-establishment, Handover

5G NR Non-Standalone (NSA) Network

- 2-sectors, each sector with 4G & 5G overlaid cells
- 4G in Band 66A & 5G in n77/78 (3.3-4.2 GHz), with 2x2 MIMO
- 3GPP Release 15
- LTE node for Control plane (+ Data plane)
- NR node for Data plane only
- All functionalities offered by LTE standalone node + Additional channel BW – 20, 40, 60, 100 MHz on NR
- Dual-connectivity operation
- 4x4 MIMO (with single sector setup)

Status:

- Deployed and tested 4G/5G NSA network in Phase-1 (see poster presentation)
- Phase-2 plans:
 - work towards making the network generally available to AERPAW users
 - scale up the number of base stations

FCC Innovation Zone and Experimental Licenses

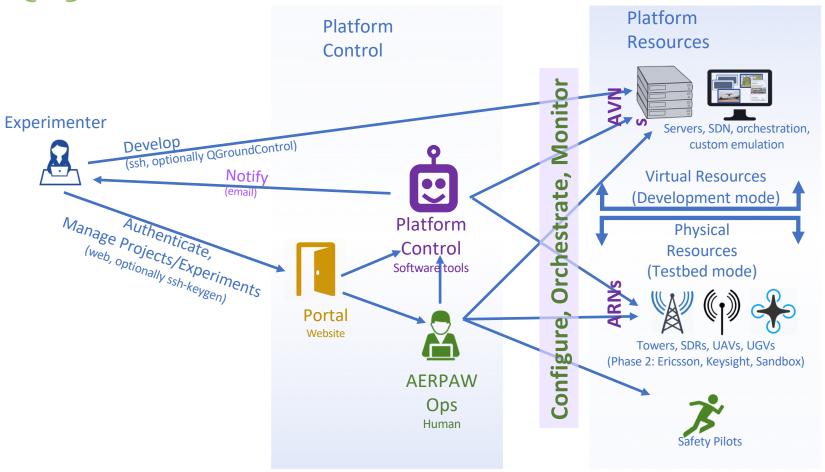
Frequency Band	Type of operation	Allocation	Fixed Station Maximum EIRP (dBm)	Mobile Station Maximum EIRP (dBm)
617-634.5 MHz (DL)	Fixed	Non-federal	65	-
663-698 MHz (UL)	Mobile	Non-federal	-	20
907.5-912.5 MHz	Fixed & Mobile	Shared	65	20
1755-1760 MHz (UL)	Mobile	Shared	-	20
2155-2160 MHz (DL)	Fixed	Non-federal	65	-
2390-2483.5 MHz	Fixed & Mobile	Shared	65	20
2500-2690 MHz1,2	Fixed & Mobile	Non-federal	65	20
3550-3700 MHz ^{1,2,3}	Fixed & Mobile	Shared	65	20
3700-3980 MHz1,2	Mobile	Non-federal	-	20
5850-5925 MHz	Fixed & Mobile	Shared	65	20
5925-7125 MHz ²	Fixed & Mobile	Non-Federal	65	20
27.5-28.35 GHz	Fixed & Mobile	Non-federal	65	20
38.6-40.0 GHz	Fixed & Mobile	Non-federal	65	20

Commission rules do not permit airborne use on all or portions of these bands.

Phase-1 General Availability

- AERPAW focuses on 3.3-3.55 GHz band for Phase-1 USRP experiments
 - Have experimental licenses, will merge to innovation zone in the future
- · We are also doing testing with commercial Ericsson (1.7/2.1 GHz and 3.7 GHz), LoRa (900 MHz), and Facebook (60 GHz) equipment at other bands, to be general available after Phase-2
- Additional SDR frequencies are being explored for Phase-2 airborne operations

Any experimental use must be coordinated with authorized users and registered receive-only fixed satellite earth stations.


Operations must be coordinated with a spectrum access system administrator

FAA Constraints and Exemptions

- → Baseline operation under Part 107
 - ◆ Line of sight, under 55 pounds, under 100 Mph, below 400 feet
- → Currently collecting data for waivers under:
 - ♦ § 107.35 Operation of Multiple Small UAS
 - ♦ § 107.39 Operation over human beings.
- → AERPAW Air Operations under ITRE-Aviation (Co-PI Tom Zajkowski)
 - Currently these as well as other exemptions in place, but for specific prior contexts
 - Need to be re-done for new aircraft type

Main Entities and Interactions

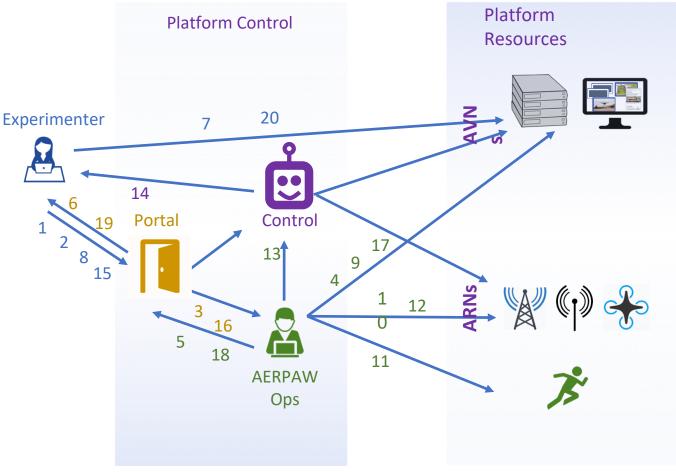
Other Modes not Impossible, but not Norm

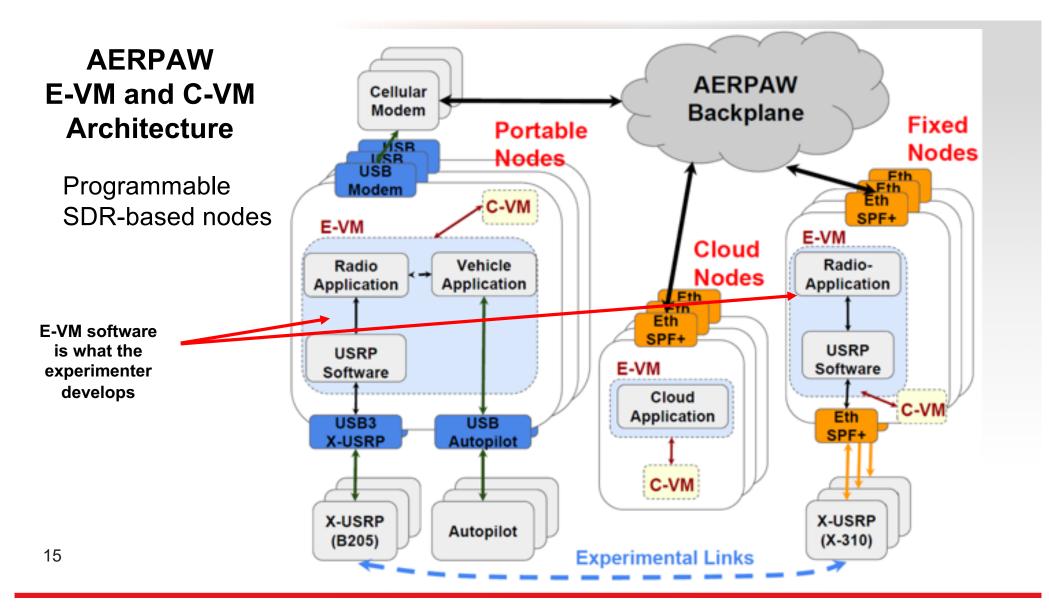
- Approach 1: Program-it-Yourself (PiY)
 - Main modalities as on previous slide

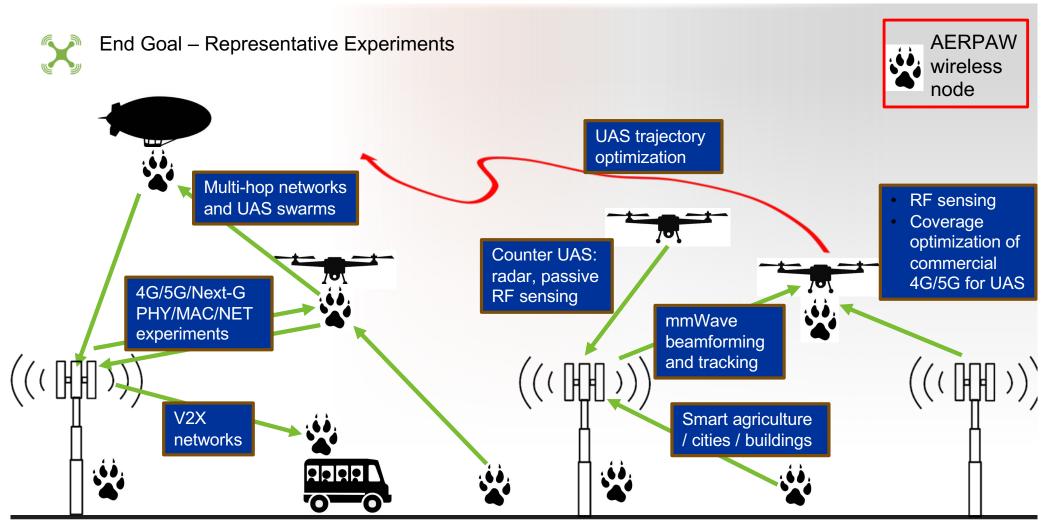
- Experiment-as-a-Service (EaaS)
 - You explain your experimental intent to us, we develop and execute it
 - You get results

- Experiment-Development-as-a-Service (EDaaS)
 - You explain your experimental intent to us, we develop it
 - You get developed experiment, modify, follow PiY from there on

- Live Limited Access
 - For parts of the testbed facilities, for some clients with documented and verified expertise (and possible indemnification and liability assumption)


- Bring your own Device
 - Case-by-case basis; Initial plan submission → Review → Detailed plan submission → approval → agreement execution


- Mixed and Custom Approaches
 - Nothing is impossible, let's discuss



Main Entities and Interactions

- 1 Register, supply credentials
- 2 Create experiment, request develop
- 3 Pass virtual request info
- 4 Instantiate virtual experiment
- 5 Pass virtual manifest, change status
- 6 Pass virtual manifest info
- 7 Login to virtual nodes, code, test
- 8 Submit experiment for testbed
- 9 Retrieve experimenter code
- 10 Install experimenter code
- 11 Handover to pilots/operators
- 12 Retrieve experimenter data
- L3 Inform completion
- 14 Inform experimenter
- 15 Request develop returned expmt.
- 16 Pass request info
- 17 Re-instantiate virtual experiment
- 18 Change status
- 19 Notify changed status
- 20 Login to virtual nodes, view

