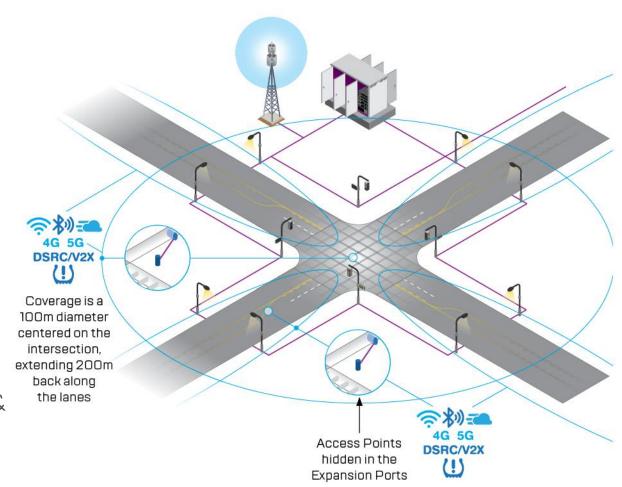


_ t
sive
)W for Edge
sive per Sq M
ut thousands?
S250k leases
rastructure?
) S


Cost, difficulty, speed, scalability – 5G architecture & deployment mismatch vs 1G to 4G macrocell

Smart Pavement Small Cell Deployment

5 APs per intersection:

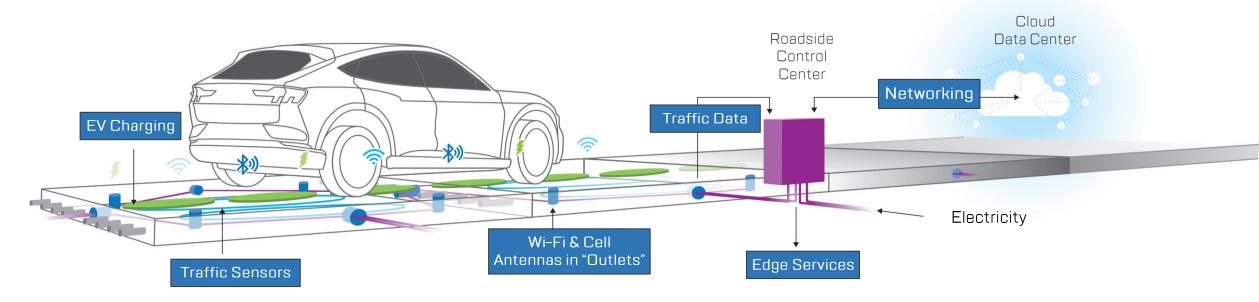
- One providing 100m radial coverage
- Four directional 200m coverage
- Coverage can overlap significantly
- Matches City grid
- Matches radio horizon for key frequencies
- Geometry is essentially the same for antennas at 8' 16' overhead
- Similar LOS issues for vehicle interference
- Devices can connect to multiple antennas & choose path based on strength
- Device vector is discoverable

INTEGRATED ROADWAYS

Current Outdated Road Infrastructure

- 40% of roads in the U.S. need immediate improvement.
- Road construction practices and procurement have barely improved since the Federal Aid Highway Act of 1956.
- Cities are demanding new technologies for connected, electric, and autonomous vehicles.
- COVID and online retail have disrupted local economies and led to capital outflows from local communities to major tech hubs.

Smart Pavement Managed Services Platform


Sensors collect anonymous vehicle, traffic, pavement condition, weather, and other data Traffic Data:

In-Road "Outlets": Leased to partners for wireless access points (Wifi, 5g, and 4G), new sensors, Smart Cities

Edge Services: High-demand on-prem service for cell carriers, content distribution networks, and more.

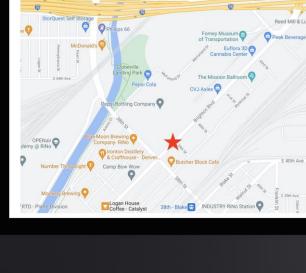
Networking: Fiber capacity available for lease to carriers & network operators

Sensors + Edge + Digital Twin + 5G + Wi-Fi etc. provides APNT for autonomy **Autonomy**:

- Aligned value prop for municipal & DOT permitting
- Open access networks enable more competition
- Open access enables new service ideation, origination, implementation
- Deployment costs spread over numerous integrated service deliveries
- CapEx is dramatically reduced
- Telecom expenses shift to OpEx
- Updates, modification, densification, and replacement are cheap

- Removes backhaul for local CEAV services
- Dramatic latency improvements
- Path selection enabled from overlapping cells
- Reliability from path selection
- MIMO maximization from overlapping cells

- High service predictability
- Significantly more scalable
- Enables mesh extension
- Ideal for next-gen mobility apps



INTEGRATED ROADWAYS

Smart Pavement in Denver, CO

Brighton Blvd. Proof of Capability

- Demonstrated tech & construction
- 4 Smart Pavement Slabs
- 32 Traffic Sensors
- 16 "Expansion Ports"
- Edge server with 60 rack units
- Ready to deliver in-road AP today

Proposed Design Parameters

- 4cm rad x 4cm height
- Software defined fractal antenna
- Multi-segment domed "buckyball"
- ~800 MHz to ~6 GHz
- Top edge at -Oz to -2.5cm z

- Full network function virtualization
- Massively MIMO
- Supports most/all 4G, 5G, Wi-Fi bands
- Multi-protocol & multi-tenant
- Beamforming by attenuating segments

INTEGRATED ROADWAYS

Lenexa, KS Showcase City Center

- 10-year, \$250m Smart Infrastructure Program Concession
- Deploy Digital Infrastructure over 10% to 20% of City
- City wants to demonstrate CEAV services
- In engineering now, groundbreaking soon
- Use as services development, testing, early deployment location for the next 10 years

Learn more about Showcase City Center Here

Digital Infrastructure: Multifunctional, Hyperlocal, Hyperscale

- Single-application networks are too costly & outdated architecture
- Next-gen+ requires distributed density + ubiquitous ULL Edge
- Digital infrastructure is sustainable, extensible, upgradeable framework
- Integrated approach enables 5G, Smart Cities, Fiber, CEAV Services
- Digital Infrastructure is our path to "a trillion connected devices."

We believe integrated infrastructure for CEAVs represents the best compromise of outcomes, cost, and performance

