

Open Al Cellular (OAIC)

Prototyping Al-Enabled Control and Testing Systems for Cellular Communications

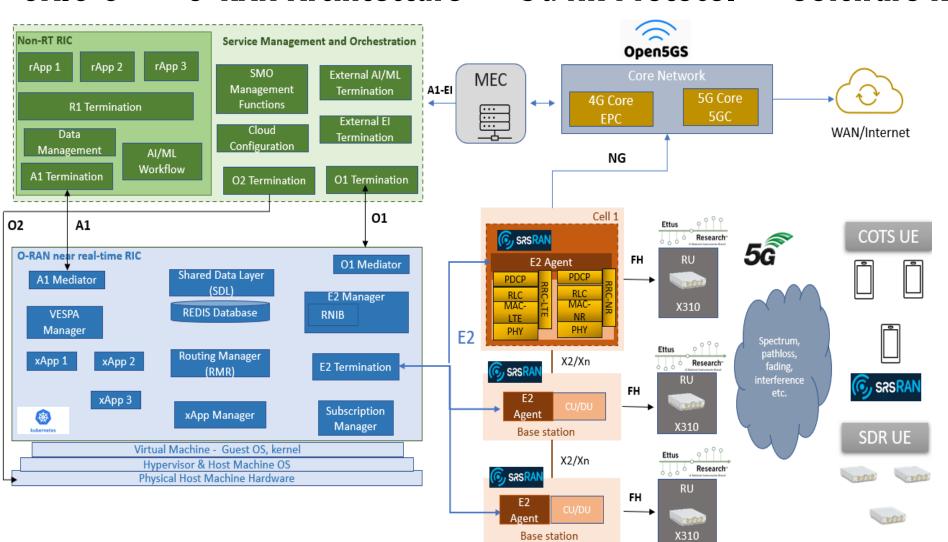
Vijay K. Shah, George Mason University

First IEEE NextG Summit 2022 June 14, 2022

OAIC Mission

Provide an open platform (including, software architecture, library and toolset) for prototyping and testing artificial intelligence-based radio access network (RAN) controllers enabling Next-G networks.

Open Al Cellular (OAIC)


Open Al-enabled Cellular RAN Controllers (OAIC-C)

Open Al-enabled Cellular RAN Testing (OAIC-T)

Open Al Cellular RAN Controllers (OAIC-C)

OAIC-C => O-RAN Architecture¹ + 5G NR Protocol² + Software Radios³

O-RAN component	OAIC implementation
O-CU, O-DU, O- RU	srsRAN-5G with USRPs, new/ enhanced interfaces
E2 interface	O-RAN Software Community (OSC)
RAN Intelligent Controller (RIC)	OSC + real time RIC extension
xApps	Existing and new
5G Core	Open5GS

'O-RAN Alliance + New Extensions

²Open-source software

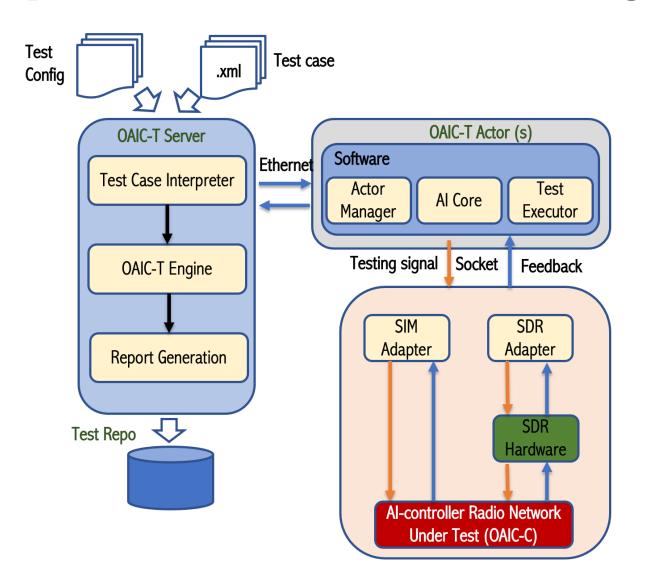
³Commercial off-the-shelf hardware

OAIC-C: Al Controllers

Existing xApps

- 1. Hello World O-RAN Software Community
- 2. Bouncer O-RAN Software Community
- 3. KPIMON O-RAN Software Community
- 4. Traffic Steering O-RAN Software Community
- 5. Load Prediction O-RAN Software Community
- 6. NexRAN (RAN Slicing) POWDER

New xApps (To be released soon)


- 1. Age of Information (AoI) Scheduler
- 2. Al-enabled Schedulers
- 3. RAN Slicing v2
- 4. Several xApps (under initial phase)

Beyond xApps

- zApps/dApps: Real-time control loop for Al-enhanced PHY layer control
- Orchestration & Management (O&M) and rApps

Open Al Cellular RAN Testing (OAIC-T)

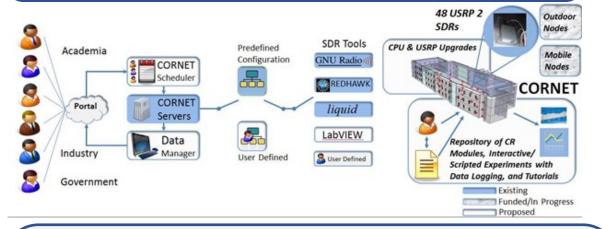
Server

Test Script Interpreter	Read test scripts in .xml, .json, etc.
Server Engine	Manage all actors, set up testing environment, and monitor test status.
Report Generation	Generate testing reports and access test repository.

Actor(s)

Actor Manager	Manage actor resources and running of test scripts.
Al Core	Provide Al capability, i.e., Al learner instances.
Test Executor	Execute individual test actions defined in test script.
SIM/SDR Adapter	Provide interfaces to the unit under test.

Small/Medium-Scale Testbeds



In-lab Testbed

- Small-scale in-lab 5G O-RAN testbed at VT, MSU and GMU.
- Features near-RT RIC, 5G NSA and SA, developed using srsRAN and O-RAN software, and 2-14 SDRs and ZeroMQ simulator integrated with GNU Radio.

Virginia Tech Cognitive Radio Network (CORNET) Testbed

- Remotely accessible in-building testbed with numerous (nearly 50) USRPs, switches, and virtual machines for development and testing
- Develop source code, automate testing, deploy applications
- Users can run sample OAIC experiments or develop and execute new experiments on CORNET

Large-Scale Testbeds

CCI xG Testbed

- Large-scale 72-node indoor testbed featuring USRPs and MEC capabilities.
- In collaboration with CCI xG Testbed Director,
 OAIC will be integrated and made available to testbed users

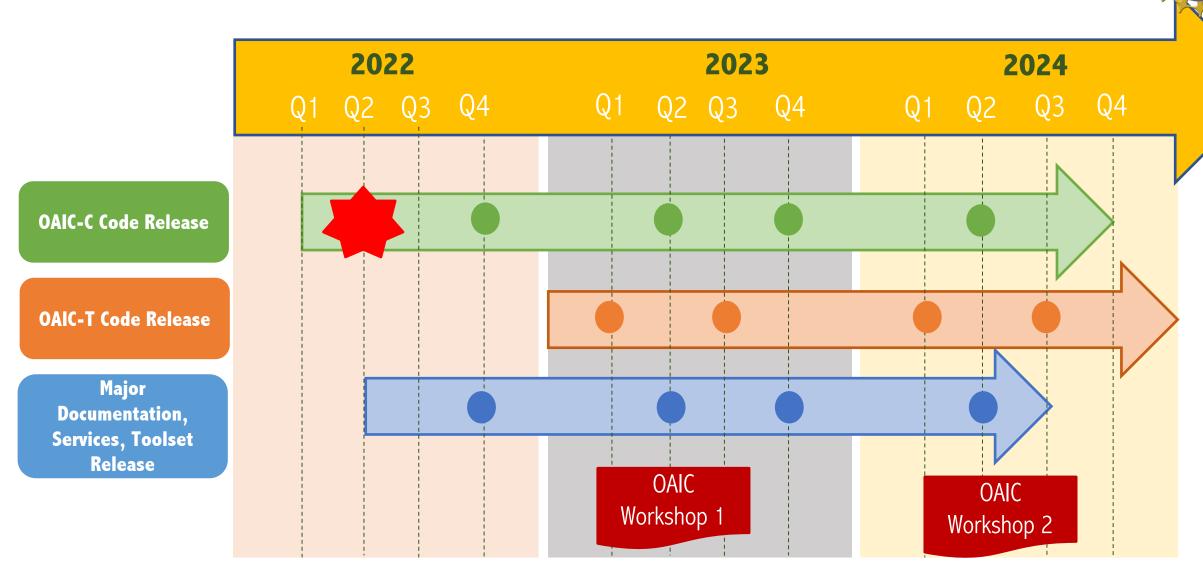
NSF PAWR Platform

- City-scale outdoor testbeds featuring USRPs and other radios, drones (AERPAW), networking and computing resources, FCC licenses
- In collaboration with PAWR PIs, OAIC will be installed and tested on PAWR platforms and made available to their users

How Do I Benefit?

OAIC (both OAIC-C and OAIC-T) will a a fully open-source community research infrastructure

- Source code will be be made available via Github and/or OAIC website
- OAIC SDR testbed will be remotely accessible via website and/or terminal


Use OAIC-C to **build** your **own AI controllers** (using near-RT RIC and/or RT RIC) for PHY, MAC (and possibly higher layers) RAN functionalities

Use OAIC-T to test your Al-controlled RAN functionalities. (Source code will be made available as well.)

All the **collected dataset** will be made available. You can **remotely** utilize OAIC platform to collect your own dataset for experimental/verification purposes.

All the documentation, services, tools will be made available. OAIC platform will be also be remotely available.

OAIC Timeline and Roadmap

OAIC Release 1.0: Code Repository

OAIC 1.0: Code

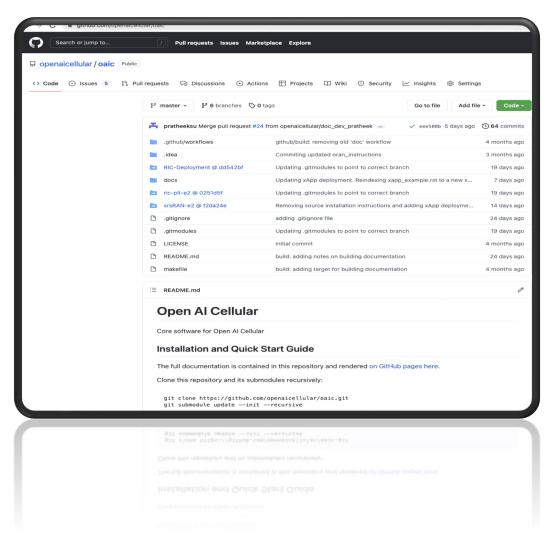
Link: https://github.com/openaicellular

Currently supports O-RAN-based 5G NSA networks

- Based on srsRAN and OSC code
- Both ZeroMQ Simulator and SDRs
- Upgrade to O-RAN based 5G SA networks (Will be integrated shortly).

Prototyping Next Generation O-RAN Research Testbeds with SDRs

Integrating the Near-Real Time RIC, E2 Interface, and Open-Source Cellular Software


Pratheek S. Upadhyaya¹, Aly Sabri Abdalla², Vuk Marojevic², Jeffrey H. Reed¹, and Vijay K. Shah³

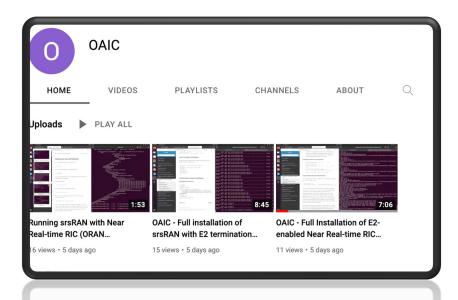
¹Bradley Department of Electrical and Computer Engineering, Virginia Tech, VA, USA

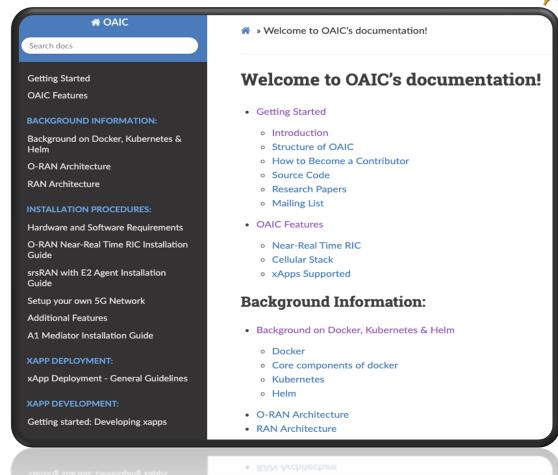
²Department of Electrical and Computer Engineering, Mississippi State University, MS, USA

³Cybersecurity Engineering Department, George Mason University, VA, USA

Emails:{pratheek,reedjh}@vt.edu, {asa298,vuk.marojevic}@msstate.edu and vshah22@gmu.edu

OAIC Release 1.0: Documentation




OAIC 1.0: Documentation

Link: https://openaicellular.github.io/oaic/

YouTube Channel: OAIC

https://www.youtube.com/channel/UCpp9hpRisjMP2gwR50GEmVQ

OAIC Release 1.0: Additional Resources

Website:

- Existing link: https://sites.google.com/msstate.edu/oaic
- New link: <u>www.openaicellular.org</u> (Will be available shortly)

Mailing list: openaicellular@gmail.com

YouTube channel: OAIC

Link: https://www.youtube.com/channel/UCpp9hpRisjMP2gwR50GEmVQ

OAIC Principal Investigators

Vuk MarojevicTestbed Architect

Bo TangOAIC-T Architect

STATE

Vijay K. Shah OAIC-C Architect

Joseph Gaeddert
Software Architect

GEORGE UNIVERSITY

Jeffrey Reed Nishith Tripathi
Outreach Broader Impact

OAIC Team

- Talha Faizur Rahman, Postdoc
- Mohammadreza Kouchaki,
 PhD Student
- Ali Sabri Abdalla, PhD Student
- Joshua Moore, Undergrad

- Vikram Reddy Anapana, PhD Student
- Ta-Seen Reaz Niloy, PhD Student

- Pratheek Upadhyaya*, PhD
 Student
- Kumar Sai Bondada, MS Student
- Romil Khimraj Balar, MS Student

Getting Involved

Use, explore and contribute to OAIC community infrastructure project.

- We seek industry involvement with building our OAIC community infrastructure, both OAIC-C and OAIC-T.
- We also want to hear your research interests, discuss collaboration opportunities, define R&D directions and joint projects.

Please reach out to us if you are interested in getting involved with OAIC project

- Email: <u>vshah22@gmu.edu</u>, <u>openaicellular@gmail.com</u> (feel free to get in touch other OAIC Pls/Co-Pls.)
- Follow OAIC website for recent updates

Getting Involved

Use, explore and contribute to OAIC community infrastructure project.

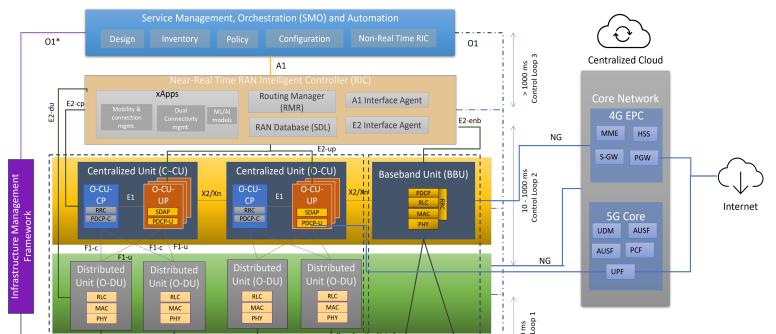
- We seek industry involvement with building our OAIC community infrastructure, both OAIC-C and OAIC-T.
- We also want to hear your research interests, discuss collaboration opportunities, define R&D directions and joint projects.

Questions? Please reach out to us if you are interested in getting involved with OAIC project

- Email: <u>vshah22@gmu.edu</u>, <u>openaicellular@gmail.com</u> (feel free to get in touch other OAIC PIs/Co-PIs.)
- Follow OAIC website for recent updates

Backup: Al Challenges in Next-G

While there is lots of optimism in the wireless research community on Al, the reality is that


- There needs to be sufficient real-world experience at scale to prove the added expense of Al is justified in improved performance.
- All in the network needs to be **extensively tested** with the rigor that other elements of the network are tested today.

Some key research questions

- How do we design cellular networks to be more Al suitable at various locations?
- What methodologies apply to test AI performance at various locations in the network?
- How do we test for cross-layer interactions of AI deployed at various points in the network?
- Can testing of AI be used to find configuration failures as well as to ensure secure configurations?

O-RAN Architecture

Based on two core principles

- Openness
- Intelligence

Flexibility by design

Open interfaces and APIs

3GPP Split 7-2x

RAN Intelligent Controllers (RICs)

- Abstract the networks
- Allow telecom operators to implement custom control logic
- Non-real time RIC enables non-real-time control and optimization of RAN elements and resources, AI/ML workflow over A1 interface.
- Near real time RIC control and optimization of O-RAN elements and resources via fine-grained data collection and actions over E2 interface.
- O-DU hosts RLC/MAC/High-PHY layers
- O-CU-CP hosts the RRC and the control plane part of the PDCP protocol.
- O-CU-UP hosts the user plane part of the PDCP protocol and the SDAP protocol.
- xApp Independent software plug-in to the Near-RT RIC platform to provide functional extensibility to the RAN by third parties

Control loop timescales:

Non-real time : > 100 ms

O-Cloud - Infrastructure - COTS/Whitebox/Virtualization layer

- Near-real time: 10ms 1000ms
- Real time : < 1ms